

ENTERPRISE

Omics-based Chemical Grouping

Professor Mark Viant

Michabo Health Science - University of Birmingham Enterprise

Michabo Health Science Ltd

BTS/NC3R/HSE CRD virtual workshop on NAMs 23 February 2022

Research team

Rosemary Barnett Tom Lawson Elena Sostare John Colbourne

Doris Hirmann Tomasz Sobanski Bram Versonnen Mounir Bouhifd

Hanna Gruszczynska Jiarui Zhou

Ralf Weber Gavin Lloyd Disclosure: Mark Viant is a cofounder of Michabo Health Science Ltd

mark@michabo.co.uk

Outline

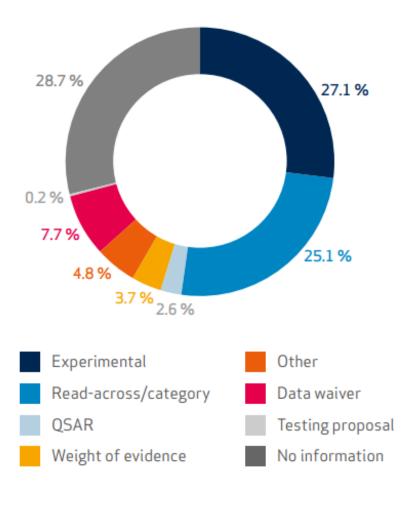
Rationale for case study

Study objectives

Results

- Conventional vs. omics-based grouping
- Read-across
- Predicting the structural drivers of omicsbased grouping

Conclusions from case study


Challenges and where next?

Grouping and read-across

- Most commonly used alternative method for data-gap filling (https://echa.europa.eu/documents/10162/0/alternatives_test_animals_2020_en.pdf)
- Reduces the need for experimental tests because information on a similar substance (source) is used to predict the properties of another substance (target)
- When Test Guideline studies have been used to generate the data for the source substance, then a properly justified read-across can be used to fulfil REACH information requirements
- While ECHA has advocated using grouping/read-across, it has had to reject the majority of read-across arguments due in part to lack of scientific rigour in defining groups of substances, leading to incompliance

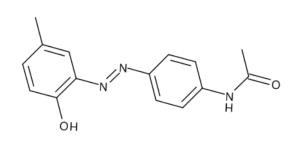
Can we increase the scientific evidence and therefore the acceptance rate of grouping/read-across dossiers by substantiating them with grouping based upon molecular mechanistic data?

View presentation from one of 2 perspectives

1. NAM (omics)-enhanced grouping to enable read-across

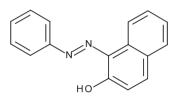
2. Omics-based grouping to support the acceleration of chemical risk assessment, first using 'omics data to screen (e.g. *in vitro*) and then group a large number of substances based on their MoA, prioritising group-representative substances for higher tier testing

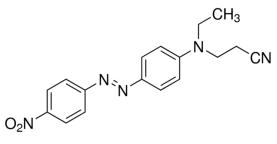
'Group first...' – H2020 PrecisionTox

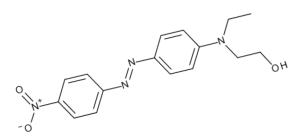

Study objectives

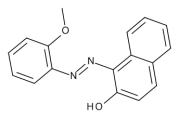
- 1. Select a target substance and series of potential source substances for grouping/read-across (analogue approach)
- 2. Apply conventional approaches to form a grouping hypothesis
- 3. Apply omics approaches to substantiate or disprove this grouping hypothesis based on molecular mechanistic data (here using transcriptomics and metabolomics)
- 4. Conduct read-across to fill the data gap
- 5. Map ToxPrint chemotypes onto omics-based grouping to predict what structural features are driving that biologically-based grouping

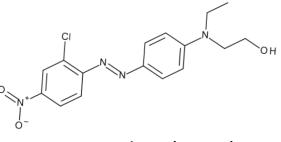
Azo dyes


Target substance:


Disperse yellow 3 (DY3)


Six potential source substances:


Sudan 1 (S1)


Disperse orange 25 (DO25)

Disperse red 1 (DR1)

Sudan red G (SRG)

Disperse red 13 (DR13)

Need to determine which source substance is most similar to the target

Grouping / read-across scenario

Type: ECHA's Read-Across Assessment Framework, Scenario 2 - analogue approach with single target substance and single source substance

Test system:

Daphnia magna

Expt'al design: low, medium, high doses for each azo dye

Endpoint (to read-across): *Daphnia* chronic reproductive toxicity (OECD TG211)

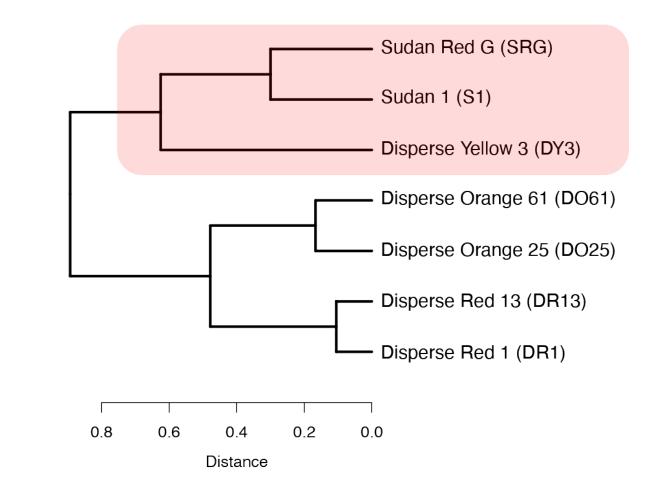
Principal aim of study was to investigate omics-based grouping, irrespective of the biological test system and test substances

Conventional approaches to form grouping hypothesis (1)

• OASIS, ECOSAR 2.0, EPA and OECD chemical categories

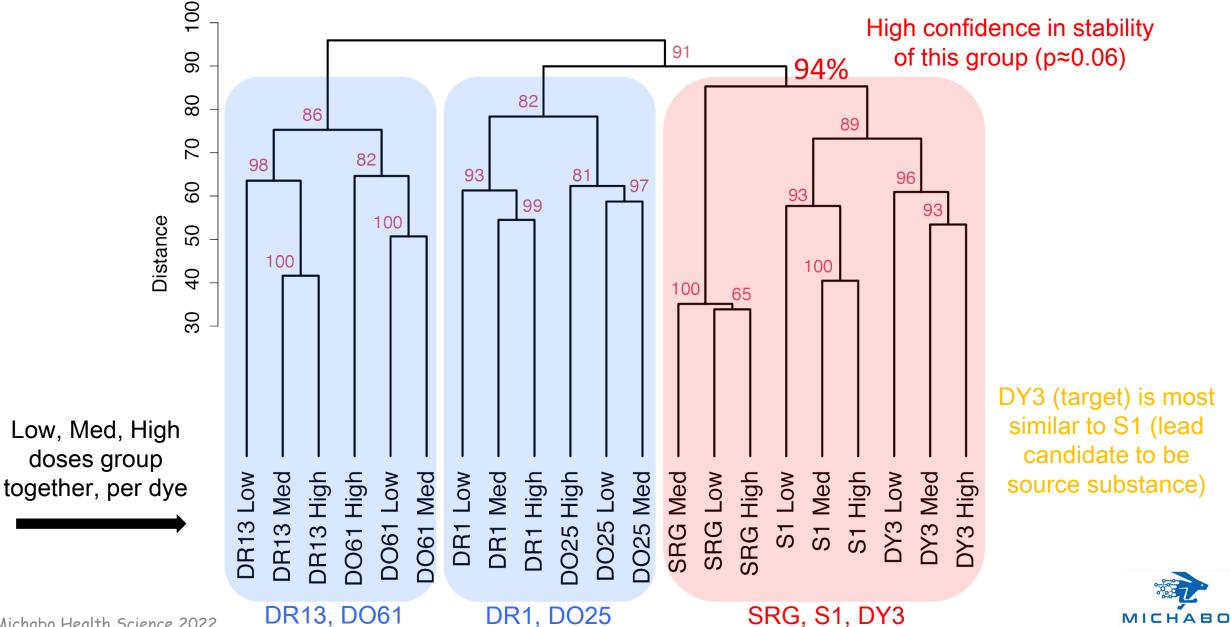
DY3	Reactive unspecified alert by acute aquatic toxicity MOA (OASIS) Belongs to Phenols, Amides, Phenol amines (ECOSAR 2.0) Belongs to Phenols (EPA New Chemical Categories) Belongs to m,p-Cresols (OECD HPV Chemical Categories)	
S1, SRG	., SRG Reactive unspecified alert by acute aquatic toxicity MOA (OASIS) Belong to Phenols (ECOSAR 2.0)	
DR1, DR13, DO25, DO61	Reactive unspecified alert by acute aquatic toxicity MOA (OASIS) Belong to Neutral organics (ECOSAR 2.0) Only DR13 and DO61 belong to Neutral organics (EPA New Chemical Categories)	

• Conclude: DY3 lies in its own group (but note DY3, S1 and SRG are all 'phenols')



'Conventional' approaches to form grouping hypothesis (2)

ToxPrint chemotypes


- Structural fingerprints containing 729 binary descriptors (atoms, bonds, rings, functional groups)
- Tanimoto distance matrix
- Hierarchical cluster analysis

Conclude: consistent with QSAR profiling, DY3 is quantitatively more similar to S1 and SRG than to DR1, DR13, DO25 and DO61

Multi-omics approach to form grouping hypothesis

© Michabo Health Science 2022

Mechanistic anchoring of omics data - transcriptomics

PATHWAY ANALYSIS

"Cellular stress and injury" pathway group =

	a C
GP6 Signaling Pathway	
EIF2 Signaling	
RhoA Signaling	
TNFR1 Signaling	
Antiproliferative Role of TOB in T Cell Signaling	
Oxidative Phosphorylation	
Role of RIG1-like Receptors in Antiviral Innate Immunity	
Natural Killer Cell Signaling	
Neuroinflammation Signaling Pathway	
Regulation Of The Epithelial Mesenchymal Transition In Development Pathway	
NRF2-mediated Oxidative Stress Response	
IL-1 Signaling	
CD28 Signaling in T Helper Cells	
NF-ĸB Activation by Viruses	
iCOS-iCOSL Signaling in T Helper Cells	
Type II Diabetes Mellitus Signaling	
FAT10 Cancer Signaling Pathway	
MIF Regulation of Innate Immunity	
Xenobiotic Metabolism AHR Signaling Pathway	
Acute Phase Response Signaling	
4-1BB Signaling in T Lymphocytes	
Role of NFAT in Regulation of the Immune Response	
TNFR2 Signaling	
Type I Diabetes Mellitus Signaling	
Breast Cancer Regulation by Stathmin1	
Coronavirus Pathogenesis Pathway	

SRG, S1 and DY3 induce similar pathway perturbations

Mechanistic anchoring of omics data - metabolomics

SOT Society of Toxicology academic.oup.com/toxsci TOXICOLOGICAL SCIENCES, 2022, 1-13

https://doi.org/10.1093/toxsci/kfac007 Advance Access Publication Date: 30 January 2022 Research article

Knowledge-Driven Approaches to Create the MTox700+ Metabolite Panel for Predicting Toxicity

Elena Sostare ,* Thomas N. Lawson ,* Lucy R. Saunders,[†] John K. Colbourne,^{*,†} Ralf J. M. Weber,[†] Tomasz Sobanski,[‡] and Mark R. Viant ,^{*,†,1}

*Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Birmingham B15 2SQ, UK, [†]School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK, and [‡]European Chemicals Agency (ECHA), 00150 Helsinki, Finland

¹To whom correspondence should be addressed at Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham B15 2SQ, UK. E-mail: mark@michabo.co.uk.

Grouping hypothesis based on phys-chem and 'omics data

	Grouping/read-across workflow	Finding
1	 Conventional grouping QSAR profilers Clustering ToxPrint chemotypes 	DY3 might be in its own group, but is most similar to S1 and SRG
2	 Omics-based grouping Clustering multi-omics profiles Molecular pathway perturbations 	DY3 in a group with S1 and SRG, and most similar to S1
3	Final grouping hypothesis	Source = S1 Target = DY3

Read-across to predict toxicity

Sudan 1 (S1)

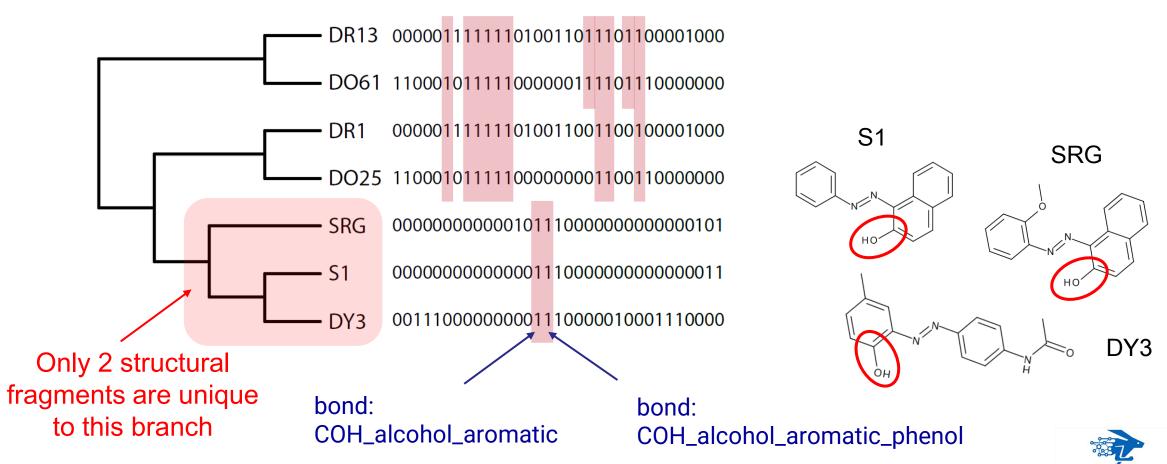
<u>Endpoint</u>: Daphnia chronic reproductive toxicity (OECD TG211) NOEC (measured) \approx 40 µg/L LOEC (measured) \approx 60 µg/L

Disperse yellow 3 (DY3)

Fill data gap in the hazard characterisation of DY3 NOEC (predicted) ≈ 40 μg/L

Experimentally confirmed the prediction: NOEC (*measured*) \approx 40 µg/L

LOEC (*measured*) ≈ 75 µg/L



Map ToxPrint chemotypes onto Omics-based grouping

Dendrogram derived from multi-omics grouping

ToxPrint chemotypes – showing only the non-zero structural fragments (33 of 729)

MICHABO

Conclusions from Case Study

- Established a workflow that enables NAM ('omics) mechanistic data to be used alongside conventional grouping approaches
- Demonstrated how 'omics data can provide a quantitative measure of similarity, allowing 7 azo dyes to be reliably grouped, and an optimal source substance identified for read-across
- Experimentally confirmed the read-across prediction
- Using ToxPrint chemotypes, predicted that aromatic phenols are driving this biologically-based grouping
- Paper in preparation

Where next? – Challenges for omics-based grouping

- Mechanistic anchoring of molecular responses to MoA
- Acceptability ("validation") of 'omics applications
 - Reproducibility / reliability
 - Cefic MATCHING international ring-trial (metabolomics, chemical grouping) *ongoing*
 - Tiered criteria based on Context of Use (CoU) of metabolomics *ongoing*
- Reporting of 'omics
 - OECD Omics Reporting Framework (TRF, MRF) DOI: <u>10.1016/j.yrtph.2021.105020</u>
 - OECD WPHA proposal *under review* 'omics-based chemical grouping
- Clear, extensive documentation of omics-based grouping
 - Horizon 2020 PrecisionTox task

