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Abstract

Courtship in Drosophila is used to screen genes linked to Parkinson
Disease in humans [13]. Courtship has been shown to allow more precise
identification of physiological impairments in Parkinson Disease models
than other fly behaviours [13]. Precise identification of early stage im-
pairments of neuronal tissue in flies may influence experimental design in
studies using mammals, and thereby address the goals of 3Rs by refin-
ing animal studies and reducing the number of animals used in research.
Drosophila courtship behaviour is mostly neglected in disease and drug
screens in flies, apart from few exceptions [13]. One reason for neglecting
courtship behaviour, despite its advantages to other behaviours, may be
the complexity of courtship behaviour. We have developed three mod-
els of fly courtship to study potential mechanisms underlying this com-
plex behaviour. We have found that dynamics of fly courtship behaviour
can be modelled reasonably well as a Markovian stochastic process. A
stochastic model can act as baseline assumption of behavioural patterns
being random. Deviations from randomness may then be explained by
sexual dirve: The female influences courtship choices of the male by sex-
ually motivating him, as Margaret Bastock suggested in her model of
male courtship [4]. We apply Bastock’s theory in two neuronal mod-
els, a Paseman-like model [21], and a Fitzhugh-Nagumo model [28, 29].
Our two neuronal models complement one another as the Paseman-model
is analytically tractable and the Fitzhugh-Nagumo model can simulate
neuronal spiking. We modelled sexual motivation as firing frequency of
model neurons. Our preliminary results suggest that our neuronal mod-
els can simulate courtship dynamics. Our neuronal models are the first
mathematical formulation of courtship behaviour in Drosophila and can
act as baseline for detecting behavioural deviations, as neuronal drive is
the currently accepted baseline model for explaining Drosophila courtship
patterns. In following-up our work we currently develop techniques to
compare baseline simulations, with real behaviour, which will simplify
quantification and interpretation of behavioural deviations. We aim to
disseminate our models and techniques as tools for studying disease mod-
els in courtship behaviour of Drosophila melanogaster to promote usage
of courtship behaviour, as courtship demonstrates higher sensitivity and
specificity in identifying early onset impairments in Parkinson Disease.
This may help to design better experiments with mammals and therefore
reduce the number of animals used in research. In addition our models
are not restricted to pattern generation of courtship in flies, but can be
applied to behavioral pattern generation in general. This includes motor
actions like walking and chewing, which are impaired in humans suffering
from a neurodegenerative disease as Parkinson.
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1 Introduction to Drosophila Courtship
Innate courtship of the male fruit fly Drosophila melanogaster consists of a
series of behaviours which alternate in a complex pattern [2]. The courtship
ritual of the male fly consists of a series of behaviours as orientation towards
the female, wing extension and copulation. Figure 1 depicts courtship as a series
of successive behaviours.

Figure 1: Courtship behaviours as presented by Billeter et al. [2].

However, transitions between courtship behaviours seem probabilistic as the
male fly can switch from any courtship behaviour to any other courtship be-
haviour [3, 6, 8]. Figure 2 presents an ethogram of courtship behaviour taken
from Cobb et al. [6]: boxes denote to different courtship behaviours, while
arrows between boxes indicate the probability of a switch through the arrow’s
thickness.

In the 1950s, Margaret Bastock presented an idea to account for the problem
of behavioural switches in innate fly courtship [4]. Her theory involves excitatory
thresholds and varying excitation in the male fly. In the course of courtship
male flies become increasingly sexually excited [4, 1, 17]. Courtship behaviours
are assumed to be hierarchical in the level of excitation they require to be
displayed [4]. Courtship is generated by one common network, with neuronal
subsets sensitive to different excitatory frequencies [9]. The neural network
determining courtship in the male fly consists of about 650 cells [9]. Through the
use of genetic tools, it is possible to narrow down even smaller neuronal subsets
which are responsible for specific courtship behaviours [10]. These neuronal
subsets can be tested both for their necessity in generating a given behaviour
(through neuronal deactivation) and their sufficiency in generating a behaviour
(by artificial neuronal excitation). Thus Drosophila allows for a systematic
study of behavioural choice.

2 Potential Impact on 3Rs and Human Health-
care

2.1 Relevance to Replacement, Reduction and Refinement
of animal experiments

Promoting fly courtship as screening tool may refine experiments with mam-
malian laboratory animals, as fly courtship allows more precise identification of
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Figure 2: Ethogram of courtship behaviour for Drosophila melanogaster. The
text in the graph’s boxes denotes to sub-behaviours of courtship: ♂mov stands
for male movement, orn stands for male orienting towards the female, ♀mov
stands for female movement, scis stands for wing scissoring, that is simultanous
extension of both wings, row stands for wing rowing, that is wing extension fol-
lowed by immediate wing swing in, vib stands for wing vibration, ext stands for
wing extension, lick stands for the male licking the female genitalia, ♀beh stands
for a class of behaviours shown by the female to express acceptance or rejection
and cop stands for copulation. The thickness of arrows represents the frequency
of transitions observed during courtship experiments. For this transition fre-
quencies are grouped in three classes, which are given in the figures key: over
25 instances of a transition, 10 to 24 instances of a transition and transitions
that occured less than 10 times. Black arrows denote transitions significant at
P ≤ 0.01 in a stepwise search for identifying subsets of behaviours that signif-
icantly deviate from the assumption of quasi-random transitions. Accordingly,
dotted arrows are not significant at P ≤ 0.01. The ethogram is reprinted from
Figure 5 of Cobb et al. [6].

physiological impairments in disease models than other fly behaviours that are
more commonly used for disease screens [13]. When research in flies can show
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that genes believed to trigger neurodegeneration in old animals only, actually
affect young animals in clearly evident ways [13], this can affect how genes are
believed to function and thus the design of follow-up experiments in mammals.
For example Shaltiel-Karyo and colleagues show that Parkinson Disease is ev-
ident in young flies’ disfunctional courtship, but not in their climbing ability.
The demonstration of early-onset PD impairments in flies courtship can be an
argument for initiating PD studies in mammals earlier, while they suffer less
from consequences of PD interventions, but already may show physiological
and behavioural impairments.

We therefore wish to promote the use of courtship as sensitive behavioural
measure in disease screens in the fly community. One problem for using fly
courtship as a standard behavioural tool for quantifying disease related im-
pairment is the complexity of courtship and the associated difficulty to define
normal courtship. Modeling can help solving this problem by providing tech-
niques and tools that define normal courtship on the basis of current theories
of how Drosophila courtship patterns emerge. Currently courtship is quantified
mainly with summary measures as the percentage of time spent courting (CI).
CI is easy to quantify and comprises courtship to one index. This allows for
large scale comparisons. However, simplifying courtship to one index omits dif-
ferences in behavioural pattern. Courtship patterns are sensitive measures of
the well-being of flies [4, 13]. The models and techniques we describe here can
be a starting point for measuring behavioural patterns in courtship and in this
way identifying otherwise overlooked impairments in disease screens.

Stochastic models of fly behaviour have been used as baseline model to detect
subtle differences in behavioural patterns of different fly species [14]. Therefore
stochastic models also may act as tools to screen for and detect subtle differ-
ences in courtship patterns of healthy and disease model flies. While stochastic
models have been used as baseline models in Drosophila behaviour research
before [14] fly behaviour has not yet been tested on fulfilling criteria of random-
ness like memorilessness. We therefore apply stochastic modelling to Drosophila
courtship and demonstrate techniques to test for true randomness in behavioural
data.

There are different ways to model Drosophila courtship behaviour. During
the workshop we have pursuid both probabilistic and deterministic modelling
approaches, that can both act as baseline models to detect subtle differences in
behavioural pattern. We chose our models to be informable with our behavioural
data and to be in concordance with existing theories of courtship behaviour.
Having models based on courtship behaviour, we can fit model parameters to
observations of healthy and diseased flies’ courtship. We experimented with
two deterministic models of neuronal activity, a Paseman-like model [21] and
a Fitzhugh-Nagumo model [28, 29]. With them we started to test Margaret
Bastocks hypothesis, which states that switches between courtship are due to
hierarchical activity thresholds for successive courtship behaviours [4]. The two
deterministic models we have studied have the advantage that they include a
physiological mechanism. Each behaviour is seen as the result of neural activity,
that triggers the behaviour when the activity or firing level is above a certain
threshold. Although this kind of model includes parameters which are difficult to
estimate, parameter estimation is possible through established statistical tools
as Approximate Bayesian Computation [19, 20].
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2.2 Relevance to Human Medicine and Healthcare
While we emphasise the Drosophila courtship in our report, our models are ap-
plicable for other behavioural patterns in other animals like Humans Drosophila.
Potentially interesting candidates are walking and chewing, which are impaired
in humans suffering from Parkinson Disease. Our models could act as baseline
models for identifying deviations from normal patterns. For instance human
walking could be video recorded and analysed on distance between footsteps,
time till shifting weight from one foot to the other and general velocity. These
parameters could then be put into either stochastic or deterministic models to
simulate a baseline behavioural motif on the assumption that these parame-
ters vary randomly (stochastic model) or depend on excitation (deterministic
models). The baseline assumptions may then help to identify deviations.

3 Initial Questions and Objectives
At the beginning of the workshop we asked the following three questions:

1. Can we expand Birgit Brüggemeiers (BB) courtship song model to courtship
as a whole?

BB has developed a simple model of Drosophila courtship song (unpub-
lished). Song consists of two qualitatively different modes: sine and pulse song.
BBs model resorts to Margaret Bastock’s hypothesis of hierarchical excitation
thresholds to explain why a fly chooses to sing sine respectively pulse song [4].
In courtship song the experimental data basis is sufficient to develop a sim-
ple model of courtship song [15, 16, 18]. During the workshop we have found,
however, that the data basis for courtship as a whole is not sufficient to model
courtship as a function of realistic physiological processes. Song choice restricts
analysis to wing movement, while courtship analysis has to account for move-
ment of various body parts. The interaction between various body parts and
the underlying physiological mechanisms is yet subject to assumptions. We have
started testing whether or not the simple hypothesis of hierarchical excitation
thresholds can account for switches between courtship behaviours.

2. How can we mine for possible models in large amounts of behaviour data?

We have used stochastic Markov processes to mine for behavioral patterns in
normal and mutant flies. For stochastic models behaviour mining is a straight-
forward, well-known process. However, it is still a challenge to show that
stochastic models are applicable and to minimize potential assumptions that
come with model choices. For the Markov property to hold we require the pro-
cess to be memoryless, while this initally seems like a very strong assumption to
make about the behaviour if it is indeed valid then the problem is mathemati-
cally far more approachable. To test the Markov property we needed to check
whether the times spent in each state of courtship were distributed exponen-
tially. Preliminary analysis indicated that the times did indeed seem to follow
an exponential distribution . We have therefore shown that the underlying con-
ditions for a Markov model being applicable are not just assumed to be true,
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but are indeed supported by our data.

3. What are advantages and disadvantages of these models?

This will be discussed below in the presentation of the respective models.
However we would like to emphasise here that a general benefit of our models
is that they can be applied to various behavioural patterns in species ranging
from flies to humans.

4 Mathematical Models

4.1 Probabilistic Model - Markov Process
In order to produce a model which was primarily data driven, we chose to
implement a stochastic model. This approach allowed for a minimal assumption
set and could have parameters which were found directly from the available data.

To begin constructing the stochastic model we first interrogate the existing
data. In order to simplify the modelling we first checked whether the Markov
property would hold for the system in question. The Markov property states
that the next state of the system depends only on the current state and not
on previous ones. This is a type of memoryless quality, however, it does not
necessarily imply that the male fly has no memory, just that the decisions made
only depend on the current state. The Markov property requires that the dwell
times in each state (that is, the amount of time spent in a state before changing
state) must follow an exponential distribution. Since we already have access to
a large amount of data we were able to produce an impirical cumulative density
function (CDF) and then check for an exponential distribution by plotting the
logarithm of the (1-CDF) function of each of the categories of dwell data. We can
see that these plots (Figure 3) appear to follow a straight line and we therefore
conclude that the Markov property is a reasonable one to assume.

We can now begin to define a continuous time Markov process to model the
system. We choose a continuous time model since the actions of the fly occur in
continuous time, even though the measurments taken are from video frames and
are therefore discretised. We first define the state space and jump rates of the
process. We use a random walk process on a graph with four nodes because the
data available was scored into four categories: No courtship, Following, Wing
extension and Copulation (see Figure 4).

4.1.1 Model Definition

Let (ηt)t≥0 be an asymmetric random walk on the graph ΛN of N nodes. The
state of the process at time t, which indicates which node the random walker
occupies is denoted by ηt ∈ N,F, S,C. We denote the rate of jumping from
state i to state j by ωi,j . We can therefore construct the jump matrix of the
process according to the graph structure illustrated.
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Figure 3: Logarithmic plots of the empirical 1-CDF for the observed data. The
linearitey of the plots near the Y-axis suggests that the Markov property is
likely to be a resonable feature to assume in the model.

J =


Ω ωF,N ωW,N 0

ωN,F Ω ωW,F 0
ωN,W ωF,W Ω 0
ωN,C ωF,C ωW,C 0

 ,

where Ω = −(ωF,N +ωF,W +ωF,C). From the jump matrix it is now possible to
construct a master equation for the process to show how the probability density
evolves across the state space in time.

d

dt


P(N)
P(F )
P(W )
P(C)

 = J×


P(N)
P(F )
P(W )
P(C)

 .

Since this process has an absorbing state, i.e. once the process enters the
copulation state it cannot leave, the stationary solution to the master equation
is trivial and corresponds to all of the probability density being in the copulation
state:
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Figure 4: A schematic of the state space of the Markov process. N denotes
No courtship, F is Following, W is Wing extension and C represents Copula-
tion. The connections in the schematic are based on behavioural observations:
Drosophila melanogaster can switch from any behaviour to any other behaviour
represented in the schematic – except for copulation. Copulation terminated
courtship behaviour. Therefore the schematic shows transitions to copulation
only and none from copulation.

d

dt


P(N)
P(F )
P(W )
P(C)

 =


0
0
0
1

 .

4.1.2 Simulations

In order to obtain a preliminary picture of whether the model outlined above
can actually generate similar behaviour to that observed in actual courtship ex-
periments, we ran computer simulations of the process. This involved modelling
a single object which could be in one of four states, corresponding to the states
in the model above. Since we are assuming that the model is Markovian the
wait times in any given state are distributed exponentially,

t ∼ λe−λ∗t,

with 1
λ being the mean wait time in the state. It is then possible to draw a

(pseudo) random time from this distribution using the inverse CDF method
such that

t = − ln(x)

λ
,

where x ∈ (0, 1) is a pseudorandom number drawn from a uniform distribution
on the unit interval.

This is all that is required to simulate the switching between states that we
wish to model. We then ran this simulation using mean wait time which were
calculated from the experimental data which we had. This could then be used
to generate an ethogram in a similar fashion to those shown in the data.
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Figure 5: Left: An ethogram of behaviours exhibited over time generated from
the simple random walk model. Right: An example of a real ethogram produced
from analysing courtship videos. The colour-bars represent different behaviours.
White stands for no courtship behaviour is shown, green for following behaviour,
red for courtship singing and yellow for copulation.

The ethograms generated (Figure 5) appear to follow similar patterns to the
real data obtained from courtship videos. In order to quantify the closeness
of the generated data to that obtained from experiment we need to define a
metric. This will allow us to determine the optimum parameters to generate
data which is closest to that observed. This will hopefully also show the validity
of the assumptions in the model if the fitted rates are close to those which are
calculated from the data.

This model can be expanded by applying it to other graph structures for the
behavioural states. This could allow for the inclusion of a richer set of states or
potentially applications to other behaviours than courtship.

4.2 Neuronal Models
When modelling the courtship patterns of Drosophila melanogaster, it has been
observed that certain neurons fire during the differing stages of courtship. We
decided to focus upon a simple model of four neuron clusters, namely: Process-
ing unit (P ), which corresponds to no behaviour; Following cluster (F ), which
in fact comprises several neuron types activated while following behaviour is
displayed; Wing vibration cluster (W ), more precisely defined as mesothoracic
cluster; and finally Copulation cluster (C), located in the abdomen. As a simple
starting point, we are going to consider these four neuronal clusters intercon-
nected with differently weighted excitatory and inhibitory connections between
them. For simplicity, we assume that the neurons in one cluster fire at the same
time, so that we can model each cluster as a single neuron. There are biological
reasons to consider each cluster modelled as one neuron. Each of the behaviours
can be linked to a group of neurons which share a specific feature, for example
an active gene sequence. When these neurons are activated at the same time,
the behaviour is displayed. Hence we can justify model a set of neurons with
one neuron both with those neurons all sharing one biological feature (active
gene sequence) and with observing behaviour when all neurons in that given set
are activated at the same time.

In the following, two different models are introduced to describe the intercon-
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nections amongst these neuronal clusters: a simple difference equations system
and a Fitzhugh-Nagumo one. If the models outputs fit well the observed be-
havioural data, they will potentially have a great value in identifying impaired
neural connections in neurodegenerative cases.

4.2.1 Pasemann-Like Model

In the 1990s, Pasemann proposed a simple model to describe interactions be-
tween neurons [21, 22]. Here the dynamics of neuronal interactions are described
by discrete-time difference equations. To every “unit” (neuron) i corresponds
one equation describing its activation ai which is defined by

ai =
∑
j

wijoj + θi,

where wij is the weight assigned to the connection between the units i and j
(i 6= j), θi = θ̄i + Ii (Ii total “external” input to unit i, θ̄i fixed bias) and oj
represents the output coming from unit j. The output function is taken to be

oj = σ(aj) =
1

1 + e−aj
.

Note that the transfer σ-functions are a standard way to describe a “smooth”
switch. While the sigma function in the original paper by Pasemann can take
values between 0.5 and 1 for aj > 0, we chose an alternative formulation (see
equation 1).

In formulating our model we were inspired by these models presented in
[21, 22], but contrary to Pasemann’s assumptions we considered neural clusters
instead of single neurons, assuming that neurons in the same cluster fire at the
same time. We also did not take any bias into account and we considered a
random external input I and a more general σ-function

σ(aj) =
1

1 + exp[m(−aj + q)]
. (1)

For positive aj our neuronal excitation model can vary between 1
1+exp[m(−aj+q)]

and 1; so one can adjust the value of q in order to move the lower bound
that was set to 0.5 in Pasemann’s original formulation [21, 22]. Our model
consists of the four units (neural clusters) described above, which interact as
described in Figure 6. It is stressed that little is known about these connections.
Therefore, on one hand it is difficult to realistically estimate the parameters,
but on the other, the model has the potential of giving a greater insight into
the understanding of the system.

Having no specific data to inform the weight choice, the numbers associated
to the various connections shown in Figure 6 are simply the times (over four
experiments) in which the corresponding behavioural transition is observed;
then the considered weights will be these numbers divided by four. In this
way, it is implicitly assumed that each behavioural switch is proportional to the
weight of the corresponding connection. However, this assumption is just taken
as a starting point to associate numbers to the weights, and further work will
be carried out to have better estimates of the model parameters.
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Figure 6: Schematic view of the model, compared with an image of neurons ex-
pressing the sex-determining gene doublesex in the Drosophila brain and ventral
nerve cord. The doublesex gene is necessary and sufficient for flies displaying
male courtship behaviours [10]. The fly brain was prepared and imaged by Hania
Pavlou, who co-authors this paper. In the image, doublesex expressing neurons
express a green fluorescend protein (GFP) while immunostaining of neuropils
gives the magenta background. In the schematic view of the model the numbers
on the edges are the number of times the corresponding behavioural switch is
observed in four experiments.

In writing the equations describing the activity of each cluster, it is assumed
that the clusters F and W reciprocally reduce the output coming from the
processing unit P , and this output is also reduced by the activity of C. More
precisely, being Fn the activation of the cluster F at time n, the value of Fn+1

is given by wPFσ(Pn) · σ(Fn −Wn −Cn) +wWFσ(Wn), where the second term
is due to the connection from W to F , shown in the diagram, and the former
term takes into account the connection from P to F “reduced” by the activity
of the clusters W and C. This approach will hopefully take into account a
sort of “hierarchy” among the neural clusters: it is observed that for example
copulation is “stronger” than following and wing extension, so we hope to see a
kind of ordered sequence in the behaviours emerging from this neural activity.

Applying similar reasoning for all the four units, the equations describing
the network are

Pn+1 = In + wFP σ(Fn) + wWP σ(Wn) (2)
Fn+1 = [wPF σ(Fn −Wn − Cn)] · σ(Pn) + wWF σ(Wn) (3)
Wn+1 = [wPW σ(−Fn +Wn − Cn)] · σ(Pn) + wFW σ(Fn) (4)
Cn+1 = [wPC σ(Fn +Wn)] · σ(Pn) + wWC σ(Wn), (5)

where In denotes the external stimulus at time n and σ is the one defined in
(1). Note that In here depends on the female response at time n and, in a first
instance, we will take it to be random.

A first numerical simulation of the model (performed in MATLAB) can be
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appreciated in Figure 7 where the neuronal activity of the different clusters is
plotted for about 60 time steps.

Figure 7: Simulation of neural activity of the four neural clusters. Here, the
following parameter values were used: wBF = 0.01×47.25, wFB = 0.01×40.75,
wBW = 0.01 × 19, wWB = 0.01 × 18, wBC = 0.1 × 0.5, wFW = 0.01 × 27.5,
wWF = 0.01 × 26.5, wWC = 0.1 × 0.5, m = 0.1 and q = 0. The weights were
multiplied by a constant for the clarity of the figure (for the same reason, all
the equations were multiplied by the factor 10). Also, it seems reasonable to
consider bigger values for wBC and wWC than the averages coming from the
experiments, because these values look too small to be realistic. Concerning m
and q, we have no information about them and further parameter estimation is
needed to inform their values more precisely.

The simulation shows that in this case the system very quickly reaches a “quasi-
equilibrium”, having the different cluster activities oscillating around a fixed
value.

To convert these results into behavioural output (which would then be com-
parable with real data), it then assumed that a certain behaviour is displayed by
the fly when the activation of the corresponding neural unit is above a certain
threshold. Therefore, Figure 8 shows the “translation” of the dynamics shown in
Figure 7: here we have a pattern of the same form of the available behavioural
data.

Although it is still too early to decide whether this output is “good” or not,
this preliminary result shows that this neural approach might be a good way to
study the model. In fact, it produces an output which is comparable with the
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Figure 8: Behavioural pattern emerging from the previous simulation of neural
activation. Here the thresholds are taken as follows: θF = 2.6, θW = 2 and
θC = 3 (we assumed θC > θW because it seems reasonable to require higher
excitation for copulation).

experiments, and the general shape of the network is based on widely accepted
biological knowledge.

The main aspect of this model that can be largely improved is the parame-
ter estimation. The neural activation presently considered does not correspond
to a precisely defined physical quantity, and it seems difficult to practically
implement an experiment measuring the weights of connections between clus-
ters. However, the data contained in the ethograms can be used to estimate the
weights and the thresholds in the normal case. Then, if the model results fit the
biological observations, this system could be used to speculate about the most
relevant connections between neurons. This would have a big impact in study-
ing the underlying mechanisms of impaired neural activity as the one observed
in Parkinson’s disease.

4.2.2 Other Mathematical Models of Neurons and Simple Networks

In 1943, McCulloch and Pitts [23] devised a simple mathematical model of a
neuron which subsequently led to the development of the field of Artificial Neural
Networks (ANNs), see [24] for an introduction to ANNs. The artificial neuron
is made up of four basic components: an input vector, say xj , a set of synaptic
weights, say wij , a summing junction with an activation (transfer) function, say
φ, and an output, usually denoted by yi. The model describes a neuron acting
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like a binary processing unit, where

yi = φ

∑
j

wijxj


and φ is usually a sigmoid function. Unfortunately, this simple binary model
is not suitable for real biological neurons. In 1952, Alan Lloyd Hodgkin and
Andrew Huxley were modelling the ionic mechanisms underlying the initiation
and propagation of action potentials in the giant squid axon [25]. By treating
each component of the excitable cell as an electrical element, and applying the
conservation of electric charge on a piece of membrane, they were able to derive
a set of Ordinary Differential Equations (ODEs) for membrane current density,
see [24] for more information. The Hodgkin-Huxley (HH) ODEs have served
as a classic reference in brain science and neurophysiology for several decades,
unfortunately, these equations did not have a sound circuit theoretic foundation
but were derived using empirical methods. In [26, 27], Chua et al. show that
sodium and potassium ion-channel memristors are the key to generating the
action potential in the HH ODEs, and that they are the key to resolving several
unresolved anomalies associated with these ODEs.

Many mathematical neuronal models have been developed since the pub-
lication of the HH paper, simplified models directly relevant to this project
are highlighted here. In 1961 and 1962, Fitzhugh [28] and Nagumo [29], respec-
tively, derived a set of ODEs (essentially a reduction of the HH ODEs) to model
the activation and deactivation dynamics of a spiking neuron. The describing
Fitzhugh-Nagumo (FN) ODEs are:

dv

dt
= c

(
v − v3

3
+ w + I

)
,

dw

dt
=

1

c
(a− v − bw), (6)

where v is a fast variable (in biological terms - the action potential), w represents
a slow variable (biologically - the sodium gating variable), and I is the magnitude
of stimulus current. The parameters a, b and c dictate the threshold, oscillatory
frequency and the location of the critical points for v and w. A neuron will
begin to oscillate when the input current I is above a critical threshold IT , say.

A spiking-bursting ODE model of a neuron was introduced by Hindmarsh
and Rose [30] in 1984, the three-dimensional system of ODEs has the form

dx

dt
= y + f(x)− z + I,

dy

dt
= g(x)− y, dz

dt
= r [s (x− xR)− z] , (7)

where f(x) = −ax3 + bx2, and g(x) = c − dx2, x is the membrane potential,
y represents the transport of sodium and potassium through fast ion channels,
and z is the transport of other ions through slow channels, x, y, z are dimen-
sionless quantities here. The choices of parameters r and s make the model
exhibit bursting, chaotic bursting and post-inhibitory rebound. The parame-
ter xR is the x-ordinate of the stable threshold critical point in the case where
there is no external current applied. This simple model allows a good quali-
tative description of many different patterns of experimentally observed action
potentials.

Arguably, the best simplified model to demonstrate most of the neuronal
dynamics displayed experimentally is that devised by Izhikevich [31] in 2003,
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although the model is biophysically meaningless. The ODEs are given by

dv1
dt

= 0.04v21 + 5v1 + 140− v2 + I,
dv2
dt

= α (βv1 − v2) , (8)

with the auxiliary after-spike resetting

if v1 ≥ 30mV, then

{
v1 ← c
v2 ← v2 + d.

(9)

The variable v1 represents the membrane potential, v2 is a membrane recovery
variable, α describes the time scale of the recovery variable v2, β determines
the resting potential of the neuron, and other parameters in (8) were chosen
so that outputs aligned with human neurons. When the spike reaches 30 mV,
the membrane voltage and the recovery variable are reset according to (9). In
2004, Izhikevich [32] compared the biological plausibility and computational
efficiency of the following mathematical models: the HH model [25], the FN
model [28, 29], the HR model [30], the Morris-Lecar (ML) model [33] and the
spiking model of Izhikevich [31]. The HH and ML models are biophysically
relevant, however, highly connected networks of these modelled neurons are
computationally inefficient. The Izhikevich model is the computationally most
efficient model capable of computing hundreds of thousands of interconnected
neurons, however, they are biophysically meaningless.

We have carried out preliminary investigations for the simplest and most
meaningful ODE model listed above, namely the FN ODEmodel (6). Drosophila
melanogaster has different classes of neurons with different properties. We de-
cided to reduce our study of neuron features on neuronal thresholds, as neuronal
excitation is known to drive switches between courtship behaviours [16]. Differ-
ent neural thresholds of each courtship behaviour are one possibility to explain
this observation.

By changing the parameter c in the ODEs (6) we can alter the threshold of
the neuron. For example, when c = 3 the threshold is approximately 0.4mV,
and the amplitude of oscillation is approximately 2 units (see Figure 9), and
when c = 1, the threshold is approximately 0.8mV, and the amplitude is ap-
proximately 0.5 units. Figure 9(a) shows that the threshold of the neuron is
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Figure 9: (a) Consider system (6), when the input is I = 0.38mV, the neuron
does not fire; (b) when the input is I = 0.4mV, threshold is achieved and the
neuron starts spiking; (c) as the input increases to I = 0.5mV, the frequency of
firing increases.

not reached and hence it does not fire, when the input exceeds I ≈ 0.4mV, the

16



neuron starts to fire with a frequency of about 0.073kHz, and when I ≈ 0.6,
the frequency has risen to approximately 0.098kHz. Figure 10 shows how the

Figure 10: Graph of neuron firing frequency with respect to neuron input mag-
nitude.

neuron firing frequency changes with respect to neuron input magnitude. Note
that, with the FN model, as the input increases beyond I ≈ 1mV, the frequency
starts to drop again and eventually the solution jumps to the other stable criti-
cal point and the neuron ceases firing once more. Physically, once the threshold
is attained the neuron will continue to fire at an increasing frequency up to some
physical limit. Thus, using the FN ODE model it is possible to have neurons
with different thresholds and having different firing frequencies. Next we want
to model how the neurons, and eventually the neuron clusters, are connected. As
a simple starting point we will consider linearly coupled FN models as depicted
in system 10

dv1
dt

= c

(
v1 −

v31
3

+ w1 + I + k

(
dv2
dt
− dv1

dt

))
,

dw1

dt
=

1

c
(a− v1 − bw1) ,

dv2
dt

= c

(
v2 −

v32
3

+ w2 + I + k

(
dv2
dt
− dv1

dt

))
,

dw2

dt
=

1

c
(a− v2 − bw2) , (10)

where k is a coupling coefficient.
A far more realistic nonlinear coupling between neurons is provided by trans-

fer functions of the form
σ(x) =

1

1 + em(τ−x) , (11)

where τ determines a threshold and m denotes the steepness of the curve.
In 2009, Borresen and Lynch [34] coupled HH ODEs together using a trans-

fer function of the form (11) and demonstrated logical AND and OR operations
of HH neurons. Three years later, these ideas were galvanized and an interna-
tional patent was published [35]. The patent illustrates how it is possible to
construct binary logic gates from coupled threshold oscillators connected using
both excitatory and inhibitory connections. Figure 11 displays the schematics
of the binary oscillator half-adder along with the corresponding time series of
input/output. The simulations were run based on FN oscillators [36].

17



−1

0

1

   

   

I
1

−1

0

1
   

I
2

−1

0

1
   

O
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

time

   

O
2

(a) (b)

Figure 11: (a) Schematic of a binary oscillator half adder comprising two inputs
I1 and I2, two oscillators O1 and O2 and a set of excitatory synaptic connections
with weights w1, w2, and an inhibitory connection with weight x1. The sum
oscillator O1 will oscillate if either I1 or I2 are active. The carry oscillator O2

will oscillate if both I1 and I2 are active. The inhibitory connection x1, from
O2 to O1 suppresses oscillator O1 if O2 is active. (b) Time series showing that
the half-adder is functioning correctly when the oscillations are simulated using
Fitzhugh-Nagumo systems. Oscillations are equivalent to a binary one in these
simulations and no oscillation is zero.

In future work we will also need to model using Delay Differential Equations
(DDEs) since delays are inherently present in neuronal networks.

5 Workshop Outcome and Future Work
We have followed up our work in Cambridge with a meeting in Oxford. We
met for five days between November 19th and November 23rd 2014. During
this meeting we presented our work to mathematicians and fly biologists from
Oxford. We have received helpful feedback on our work. Specifically, we were
able to improve our Markovian courtship simulations and inform our neuronal
models with up-to-date physiological knowledge of courtship neurons.

During the November meeting we were able to link our Markovian random-
walk model with our Pasemann-like neuronal model. While the random-walk
model allows for rapid simulations, the Paseman-like model might allow insights
of mechanistic nature. For example, we can address the question "What dis-
tinguishes a neuronal network giving rise to normal and impaired courtship?".
In order to study this question we have recently contacted Daniel Segal who
leads a group working on neurodegeneration in Drosophila [13]. Daniel Segal
has welcomed our initiative to model courtship in flies and we have started a
collaboration.

In addition we have started to work on techniques to quantify deviations
from our models. As our model can be used as baseline, quantifying deviations
from baseline is crucial to identify regions of interest for further research. We
plan to publish a paper to disseminate our models and additional techniques we
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have developed following the maths study group.
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