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1 Statement of the problem

The production of high affinity immunoglobulins of specific isotypes, tailored to respond to different im-

munologic challenges, is central to the success of the vertebrate adaptive immune system and must be tightly

regulated to maintain health. For example, the production of IgE is required to clear helminth infections,

yet results in allergy when B cells recognising “innocuous” antigens switch to produce IgE in the nose (hay-

fever), lung (asthma) or skin (eczema). Similarly, the dysregulated production of IgG lies at the heart of

many immune conditions such as arthritis and autoimmune disease. Upon antigen encounter in the “germi-

nal centres” of lymph nodes (see Figure 1), B cells can change the isotype and affinity of the immunoglobulin

they produce through processes known as class switch recombination (CSR) [1] and somatic hypermutation

(SHM) [2].
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Figure 1: Cellular process occurring during the germinal centre reactions [3]. Germinal centre re-

actions begin when naı̈ve B cells encounter antigen in the lymph node (in the presence of T cells or

Follicular Dendritic cells) and start to proliferate, forming the germinal centre structure. Rapid B cell

proliferation (accompanied by Somatic mutation of the Ig genes) occurs in the dark zone. Following

proliferation, B cells migrate to the light zone where they are selected for antigen binding by inter-

action with T cells and FDCs, rescuing them from apoptosis. Interaction with T helper cells induces

class switching and maturation of the B cell into Ig secreting plasma cells or long-lived memory B

cells.

Thus the germinal centre reactions require a carefully choreographed series of events to take place includ-

ing: gene transcription, DNA breakage and recombination, cell division, regulation of apoptosis and cell

differentiation into either antibody producing plasma cells or long-lived memory B cells. To date, little is

known about the molecular mechanisms that regulate these activities, target CSR to the IgE gene or how this

process may be subverted in asthma and allergy.

Class switch recombination takes place when B cells receive cytokine signals in the presence of T-cell

help, initiating the transcription of the “germline” immunoglobulin heavy-chain genes and activation of

the recombination pathway. Immunoglobulin class switch recombination to IgE can occur either directly

from IgM or via IgG as an intermediate and it is thought that the “choice” of these different pathways has

repercussions for the affinity of the resultant antibody and longevity of the B cells produced [4, 5]. It is

known that cell division is required for the completion of class switching, and it has been proposed that
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division number may regulate the outcome of the process [6]. However, the basis for this division- linked

regulation is still poorly understood. Recently, much attention has been given to the mathematical modelling

of various aspects of the germinal centre reactions [7, 8, 9] and we feel that a similar investigation of the

mechanisms directing class switching would be highly informative.

Our goal for the study group was to model the kinetics of these reactions to understand which might be

the rate limiting steps are and why production of IgE occurs less frequently than IgG. More precisely, we

wanted to understand what modelling assumptions were necessary to explain the experimental findings

shown in Figures 2 and 3.

Figure 2: B cell proliferation dynamics and class switching. B cells have previously been studied by

staining cells with CFSE (Carboxyfluorescein succinimidyl ester) (reviewed in [6]), yielding repro-

ducible proportions of cells that have undergone a fixed number of divisions (A) and suggesting that

a defined number of divisions is required to switch to different isotypes (B&C).

In addition, we wished to interrogate genome wide expression data that we had previously collected in a

more “unbiased” manner with a view to identifying factors that might regulate and particularly co-ordinate

the processes described above. To date much research in this area has been carried out in mice, utilising in

vitro stimulation of primary murine B cells (isolated post-mortem from the spleen and bone marrow) and

mouse models of asthma and allergic disease. These studies use large numbers of animals and are associated

with animal welfare concerns; asthma disease models require repeated dosing of inhaled allergen over the

course of several weeks and long term kinetic investigations of circulating and lung lavage cell numbers
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Figure 3: Dynamics of the appearance of class switched B cells in in-vitro cultures. The appearance

of class switched (IgG+ and IgE+) B cells was followed by flow cytometry over the time course of the

in-vitro culture following IL-4 and anti-CD40 stimulation.

over the course of months in mice with impaired life expectancy. However, we (and others) have shown

that class switching appears to be regulated differently in mice vs. man and that as such mouse models of

disease have not been predictive, particularly regarding asthma (H. Gould Trends in Immunology, in press).

We have previously established a human ex vivo culture system that we believe models these germinal centre

reactions more closely than the murine system and has more relevance to investigations that could advance

human healthcare. We hope that by the application of the methods described above we can demonstrate the

utility of this model and identify targets that we can take forward into mechanistic studies.

2 Transcriptional profiling of IgM to IgG/IgE switching in human B-lymphocytes

post interleukin-4 stimulation via recursive partitioning

2.1 Introduction

To provide biological insights into B-cell activity post interleukin-4 (IL-4) stimulation, gene transcript ex-

pression data collected from cultures were interogated by two recursive partitioning methods, single decision

trees and the multiple decision tree method, random forests [11, 12]. The application of tree algorithms to

transcript data allowed for the identification of the statistically most important gene transcripts stimulated
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post IL-4 exposure (from approximately 20,000 transcripts analysed, 4,000 were significantly up or down

regulated). Of the 4,000 initially significant IL-4-stimulated transcripts, 30 transcripts were identified that

spanned cell cycle, cell death (apoptotic) and immune pathways, with subsequent tree analysis revealing the

most important transcripts.

2.2 Methods

Initial screening of the gene transcription data was performed by a Bonferroni correction for multiple hy-

pothesis testing. All transcripts had a p - value calculated to estmate the significance of transcript fold in-

crease or decrease post IL-4, versus the control non-stimulated cultures (day 0). The Bonferroni correction

B was calculated according to B = α/n, where α = 0.05 (significance level for a single hypothesis), and n

is the number of hypotheses tested. For the data set provided, there were ≈ 16, 400 transcripts tested, and 5

time conditions tested versus day 0 (days 0.5, 1.5, 3, 5, 12 post IL-4), resulting in the number of hypotheses

estimated at approximately 82,000. From this calculation a p value of 6.1× 10−7 was estimated. Based on

this calculation, only transcripts with p ≤ 10−8 were considered for further analysis by tree methods.

2.2.1 Single and multiple recursive partitioning investigation of top 30 gene transcripts

Recursive partitioning, known commonly as decision trees, is a machine learning technique for the pre-

diction of class labels from a finite set of data, and was used here as a method to predict gene transcript

importance against the time variable (days 0.5 - 12) post IL-4 stimulation. Single decision trees also provide

the advantage of calculating single or multiple predictor variable thresholds associated with the response of

interest.

The algorithm relies upon calculations of impurity, either via entropy −
m∑
k=1

pi log pi, or the Gini index

1−
m∑
k=1

p2
i , followed by the application of impurity measures, given by

k∑
j=1

(|Ej |/|E|) I(Ej) (1)

to derive k possible answers by dividingE into subsets {E1, . . . , Ek}with minimal mean weighted impurity

(1) [11, 12]. Here E is the number of total training items, m is the number of classification classes, pi is the
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fraction of E items that belong to Ei, k is the number of possible answers once impurity I is considered and

the weighted average of I is minimised for ultimate best predictor variables (“children nodes”).

Thirty gene transcripts with statistical significance for fold change versus day 0 control cultures of p <

10-8 (Table 1) were analysed by single decision trees and random forest (1000 individual trees; 10 random

predictor variables tested per tree). The weighted importance of each transcript from Table 1 was decided

from a mean decrease Gini Index with a weighted score of 12 indicating the most important transcript, to

zero indicating no importance of the transcript to IL-4-induced expression over time.

2.3 Results

Bonferroni correction identified 30 gene transcripts with statistical significance of p < 10−8 (actual signif-

icance level was calculated as 6.1 × 10−7) (see Table 1), which were thereafter interrogated by recursive

partitioning analyses. These transcripts reflect the most significant general increase or decrease of specific

gene expression in primary human B-cells at any post IL-4 exposure timepoint (days 0.5, 1.5, 3, 5, 12) in

comparion to control cultures without IL-4 stimulation. The profile of highly significant transcripts included

immune gene expression (e.g. CCL17), transcription machinery (e.g. BATF3), chromatin remodelling (e.g.

HIST1H1C), apoptotic and cell cycle factors, as well as a newly characterised and potentially novel factor

with with rôles in cytoskeleton function and mitotic divison (MIIF).

Table 1: All B-lymphocyte gene transcripts with significant up or down expression at p < 10−8 at any

day post IL-4 stimulation (days 0.5 -12). The data is from human ex vivo B-cell cultures from primary

lymphoid tissue (tonsil). Data collected at 0.5, 1.5, 3, 5 and 12 days post IL-4 stimulation. Change in gene

expression compared to resting cultures (no IL-4) at day 0.

Gene Name (Abbreviation) Transcript ID (Gene

assignment)

Chromosome location Function/Description

MIIP 2320657 (NM 021933) 1p36.22 Migration & invasion inhibitory protein

TNFSF4 2444283 (NM 003326) 1q25 Tumor Necrosis Factor (ligand) superfamily,

member 4

KIF14 2450345 (NM 014875) 1q32.1 Kinesin family member 14

BATF3 2454818 (NM 018664) 1q32.3 Basic leucine zipper transcription factor,

ATF-like 3

ARID5A 2494537 (NM 212481) 2q11.2 AT rich interactive domain 5A (MRF1-like)

IKZF2 2597867 (NM 1079526) 2q34 IKAROS family zinc finger 2 (Helios)

BHLHE40 2608725 (?) 3p26 Basic helix-loop-helix family, member e40

IL17RB 2624565 (NM 018725) 3p21.1 Interleukin 17 receptor B

EPHB1 2643592 (NM 004441) 3q21-q23 EPH receptor B1
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MARCH1 2792166 (?) ? Membrane-associated ring finger (C3HC4) 1,

E3 ubiquitin

AHRR 2798586 (NM 020731) 5p15.3 Aryl-hydrocarbon receptor repressor

ATXN1 2943434 (NM 000332) 6p23 Ataxin 1

HIST1H1C 2946232 (NM 005319) 6p21.3 Histone cluster 1, H1c

RPS6KA2 2984655 (NM 021135) 6q27 Ribosomal protein S6 kinase, 90kDa,

polypeptide 2

TFEC 3069082 (NM 012252) 7q31.2 Transcription factor EC

FGD3 3179551 (NM 1083536) ? FYVE, RhoGEF and PH domain containing 3

NFIL3 3214451 (NM 005384) 9q22 Nuclear factor, interleukin 3 regulated

TRAF1 3223738 (?) 9q33-q34 TNF receptor-associated factor 1

KIF18A 3367338 (NM 031217) 11p14.1 Kinesin family member 18A

GPR18 3522644 (NM 00529) 13q32 G protein-coupled receptor 18

HOMER2 3636391 (NM 199330) 15q24.3 Homer homolog 2 (Drosophila)

CCL22 3662687 (NM 002990) 16q13 Chemokine (C-C motif) ligand 22

CCL17 3662710 (NM 002987) 16q13 Chemokine (C-C motif) ligand 17

EBI3 3817380 (NM 005755) 19p13.3 Epstein-Barr virus induced 3

TRIP10 3818515 (NM 004240) 19p13.3 Thyroid hormone receptor interactor 10

BCL2L1 3902489 (NM 138578) 20q11.21 BCL2-like 1

B4GALT5 3908963 (NM 004776) ? UDP-Gal:betaGlcNAc beta 1,4-

galactosyltransferase, polypeptide

TOM1 3944084 (NR 024194) 22q13.1 Target of myb1 (chicken)

XBP1 3956589 (NM 005080) 22q12.1 X-box binding protein 1

Subsequent multiple decision tree analysis (random forest) provided an overall importance weighting (mean

decrease Gini Index; scale 0 − 12) of specific transcripts relative to time post IL-4 stimulation (Table 2).

Prominent among the most important transcripts were the transcriptional regulator proteins FGD3, NFIL3,

IKZF2 and BATF3, with MIIP weighted as the second most important transcript stimulated in human B-cells

post IL-4. Immune associated proteins, for example TNFSF4, TRAF1 and CCL17, also featured transcripts

of importance (Table 2), but with weighted importance scores < 5 on the Gini Index scale. Single decision

trees consistently found MIIP, FGD3 and TNFSF4 as the leading transcripts associated with IL-4 stimulation

of human B-cell cultures, with fold change thresholds detected at ((><)6.0 to (<)9.0 for predictions of time

(days) post IL-4 (results not shown). MIIP is of particular interest due to its novelty, as well as for its dual

rôle for cytoskeleton kinetics and mitotic division regulation.
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Table 2: Summary of top ranked transcripts detected in IL-4 stimulated primary human B-cell cul-

tures. Results reflect the impact of IL-4 stimuation over time (resting time 0 versus days 0.5, 1.5, 3, 5

and 12 post stimulation).

Array ID Code Gene or Protein Name Chromosome location + (Close loci, function) Importance (Mean Decrease

Gini Index)1

3179551 FGD3 // FYVE, RhoGEF and PH domain

containing 3

? > 10

2320657 MIIP // migration and invasion inhibitory

protein

1p36.22 (proximal to TNFRSF8) > 8

3214451 NFIL3 // nuclear factor, interleukin 3 regulated 9q22 (Transcription - binds to ATF) 7.5− 8

3367338 KIF18A // kinesin family member 18A 11p14.1 (kinesin superfamily of

microtubule-associated molecular motors)

7.5− 8

3908963 B4GALT5 // UDP-Gal:betaGlcNAc beta 1,4-

galactosyltransferase

20q13.1-q13.2 (directs protein to Golgi

apparatus)

7.5

2597867 IKZF2 // IKAROS family zinc finger 2 (Helios) 2q34 (haematopoietic-specific transcription

factor - reg lymphocyte development)

6.0 - 6.5

2454818 BATF // basic leucine zipper transcription

factor, ATF-like 3

1q32.3 (transcriptional repressor; IL-2

repressor?)

6.0

Other top 30 transcripts of interest

2444283 TNFSF4 // tumor necrosis factor (ligand)

superfamily, member 4

1q25 (prox - TNFSF18. Polymorphism assoc

with SLE)

4.0 - 4.5

3223738 TRAF1 // TNF receptor-associated factor 1 9q33-q34 Prox – C5. Activate NFκB. TRAF1

+ TRAF2 = anti-apoptotic

1.5 - 2.0

3662710 CCL17 // chemokine (C-C motif) ligand 17 16q13 (Prox to CCL22 and cytokine-induced

apoptosis inhibitor 1. T-cell rôle only)

1.0

3662687 CCL22 // chemokine (C-C motif) ligand 22 16q13 (See CCL17) < 1.0

With several gene transcripts identified and importance values calculated, subsequent analyses considered

the significance of individual transcripts at each time point post IL-4 stimulation.

Table 3 summarises the pattern of significant (p ≤ 10−8) up or down regulation of key B-cell transcripts

at each of the post IL-4 time points where RNA was collected for microarray. While all transcripts were

initially brought to attention for significance (after Bonferroni correction) against time in general, closer

scrutiny showed that the time of significant increase or decrease of gene expressionwas variable, depending

on the gene in question. MIIF showed prominence in both single tree and forest analysis, but was significant

only at day 12 post stimulation. The immune gene transcripts TRAF1, CCL17 and CCL22 showed signif-

icant increases in expression at all time points post IL-4, with IL-3-regulated nuclear factor (NFIL3) also

significantly and positively expressed at each post IL-4 time point. Another prominent transcript detected by

tree analysis, FGD3, was significantly downregulated in expression at days 0.5, 1.5 and 3 post stimulation,

but not for later time points. These specific transcript differences in significant expression patterns will be of
1Highest transcript importance scored at≥ 10 on the Mean Decrease Gini Index; lowest importance equals 0 on the same scale.

RandomForest analysis run on R (v3.0.0); 1000 trees (ntree = 1000) with 10 transcripts randomly tested per tree (mtry = 10).
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value in tandem with predictions from the mathematical modelling of cell growth and cell death phases after

exposure to IL-4. Further understanding of transcript activity at individual time points is presented in Figure

4, where fold differences are summarised and individual transcript kinetics emphasised, complementing the

findings summarised in Table 3.

Table 3: Pattern of significant (p < 10−8) transcription increase/decrease for 25 genes from human ex

vivo B-cell cultures stimulated by IL-4. Significance determined by fold increase versus day 0 (pre-

IL-4) for 0.5, 1.5, 3, 5 and 12 days post-stimulation. —: Transcript downregulated. Grey shading

means significant up or down-regulation at the indicated time point.

Gene Transcript
Days of Significant Activity Post IL-4 Stimulation

0.5 1.5 3 5 12

AHRR

ARID5A — — —

ATXN1

B4GALT5

BATF3

BCL2L1

BHLHE40

CCL17

CCL22

EBI3

EPHB1

FGD3 — — —

GPR18 — —

HOMER2

IL17RB

KIF14

MARCH1 — — — —

MIIP

NFIL3

RPS6KA2

TFEC

TNFSF4

TOM1

TRAF1

TRIP10

XBP1

2.4 Discussion

1. Literature search to determine whether any of the above identified proteins have been associated with

B-cell activation etc post IL-4, as well as in relation to allergy, particularly IgE production and IgE vs

IgG switching;
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Figure 4: Gene transcript expression patterns selected by relative importance on recursive partitioning

entropy scales and Gini index (see Table 2). Results represent positive or negative fold change post

IL-4 versus non-stimulated primary human B-cell control cultures (no IL-4). Only transcripts with

statistical significance at p ≤ 10−8 post Bonferroni correction were considered.

2. Next steps: specific qT-PCR, ELISA, other protein identification methods, on repeat prospective hu-

man B-cell cultures - have the statistical + machine learning predictions been validated in the biolog-

ical system?
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3. Limitations: for tree/forest analysis we need dozens to thousands of cases. Due to expense and

other reasons, only limited transcript data was available with rudimentary adjustments made for this

study. If new microarrays, RNA seq cannot be conducted, new analysis can be performed after data

“bootstrapping”, “bagging” or similar sampling methods on the original small data set to enhance

predictions through randomly generating new cases.

3 Cell level modelling

3.1 Introduction

We have considered number of different modelling frameworks. The most general of these is a 22-dimensional

structured population model, which we will describe first; a systematic analysis of it is left to future work

as are simulations using a Gillespie algorithm-based stochastic model. Here we present an analysis of

3-dimensional lumped ODE model and an explicit solution of a birth-death process based on an individual-

based model of [10].

3.2 A structured population model

3.2.1 Introduction

Given the experimental results, the most general framework that can be used to model them is a structured

population model that takes into account that transitions among different cohorts of cells. Such a model

would be couched in a system of ODEs. This system of ODEs can be supplemented by equations for the

kinetics of soluble factors such as IL-4 and anti-CD40. Looking to the future, since aggregation of cells is a

prominent feature of the in vitro set-up, it is desirable to take into account cell motility, as well diffusion of

other soluble factors such as immunoglobulin molecules shed by cells producing them.

In this part of the report we mainly discuss the dynamics of cell cohorts, as this has been the thrust of the

biologists’ questions. We start by writing the most general form of the equation that would be satisfied by

the density of a cohort and then specialise to the case of realistic cohorts disregarding any diffusion effects.
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3.2.2 The most general form of the equations

We only write such an equation for a cell cohort. Assume that there are N different cell cohorts (distin-

guished by the number of divisions they have been through and the type of immunoglobulin they produce).

Denote the density of the i-th cohort at time t at location x of the domainD in which the cells live (typically,

D is a circular domain corresponding to the Petri dish) by ci(x, t), and the N -vector of all cell densities by

c = (c1, . . . cN ). Denote the vector of concentrations of all soluble factors by s(x, t); let its dimension

be M . Typically this vector would contain as components concentrations of the three immunoglobulins, of

IL-4 and of anti-CD40. The the most general equation for the dynamics of ci has the form

∂ci
∂t

= ∇ · (Di(s, c)∇ci) +
N∑

k=1,k 6=i
fk,i(ck, s)−

∑
k=1,k 6=i

fi,k(ci, s)−mi(ci, s).

Here Di(c, s) is a hold-all diffusion term that expresses the dependence of the diffusion coefficient on

soluble facts and other cohorts; fl,n is the rate of moving from cohort l to n (either by division; see below,

or by shift in the type of immunoglobulin produced, and mi is the mortality rate of cells in cohort i.

Such an equation can be written for each cohort; these N equations are to be supplemented by M equations

for soluble species. Working out functional relations is not easy. Once that, and order of magnitude estimates

for constants are available, the resulting N +M in general quasilinear reaction-diffusion equations are to be

solved on D with Neumann (no-flux) boundary conditions. A rough estimate is that M ≈ 5 and N ≈ 22,

so the hope of obtaining analytic results is slim.

Trying to specify such a model seems to us nonetheless a useful exercise, as it immediately raises questions

of factual ignorance that need to be investigated: e.g. how does the death rate of cells depend on what the

cells are doing, how much IL-4 is available, and so on. Similarly, specifying the dynamics of IL-4 requires

knowing the dynamics of IL-4 binding and internalisation by the different cohorts of cells.

3.2.3 The simplest possible structured population model of the in vitro system

The simplifying assumption we make here is that diffusion mechanism are not being taken into account and

that the concentrations of the soluble species are either constant in time or play no rôle.

Furthermore, we will assume that all interactions are linear. We will denote densities of cells producing

immunoglobulin of type IgX by X. We will take into account cells having undergone up to 8 divisions. This
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means that we have the following cohorts:

1. IgM-producing cells: {M0, . . . ,M8};

2. IgG-producing cells: {G2, . . . , G8};

3. IgE-producing cells: {E3, . . . , E8}.

It is tedious to write down all the equations. For example, the equation for E4 would be

d

dt
E4 = fM4,E4M4 + fG4,E4G4 + 2fE3,E4E3 − fE4,E5E4 −mE4E4.

Note that fM4,E4 is a CSR rate, while fE3,E4 is a division rate! Similarly, the equation for G4 would be

d

dt
G4 = fM4,G4M4 − fG4,E4G4 + 2fG3,G4G3 − fG4,G5G4 −mG4G4.

Let us simplify the system further. Let us assume that the division rate is constant across the cohorts, and

that so is the mortality rate. Let us call the common division rate d, and the common mortality rate m, so

that the E4 equation becomes

d

dt
E4 = fM4,E4M4 + fG4,E4G4 + 2dE3 − dE4 −mE4.

Now the question asked by the biologists can be formulated as follows: what specifications of fMi,Ei ,

fMi,Gi and fGi,Ei give plots of proportions of IgG- and IgE-producing cells versus time as obtained in

experiments?

The consensus among biologists is that assuming that these rates are independent of i does not give the right

results, and that each of the rates f must be an increasing function of i; we comment on this below.

Two remarks are in order. First of all the 22-dimensional system of linear ODEs can be explicitly solved.

This is because the equations for M0 decouples and one can sequentially solve then all the M equations;

once these are solved, one can solve the G equations, and once that is done, one can solve the E equations.

Second, one can make the assumption of a particular form, of dependence of the fs on i, for example:

fMi,Ei = H(i− 3)αM,E(1− eβM,Ei).

Such an Ansatz reduces the number of unknown constants associated with CSR to only 6.
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3.3 A 3-dimensional ODE model of immunoglobulin class switching

A gross simplification of the model detailed in Section 3.2.3 is to consider a 3-dimensional model of the

immunoglobin switching process as shown in Figure 5. This allows us to undertake mathematical analysis

of the system given the reduced complexity of the governing system of ODEs.

Figure 5: The three population model

Assuming cells occupy either one of the three states IgM, IgG and IgE, of which their population densities

are denoted M , G and E, respectively, and proliferation and death occur exponentially, we arrive at

dM
dt

= (αM − k1 − k2 − dM )M = βM, (2)

dG
dt

= αGG+ k1M − k3G− dGG, (3)

dE
dt

= αEE + k2M + k3G− dEE (4)

where αX and dX withX ∈ (M,G,E) represent the respective rate constants of cell proliferation and death

and k1, k2 and k3 are the transistion rate constants for switching between the IgM and IgG, IgM and IgE

and IgG and IgE states, respectively. Here β = αM − k1 − k2 − dM .

The system is closed with the initial conditions

M = M0, G = 0 and E = 0, (5)

which states that all cells initially occupy the IgM state.
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3.3.1 Model analysis

Equations (2)-(4) constitute a system of linear ODEs for which explicit solutions can be obtained. Equa-

tion (2) de-couples from the remaining two and can be integrated to give

M(t) = M0e
βt. (6)

Substituting this result into equation (3) and integrating yields

G(t) =
k1M0

(β − γ)

(
eβt − eγt

)
, (7)

where γ = αG − k3 − dG. Subsequently substituting this result into equation (4) and integrating yields

E(t) =
[

k1

(β − a)
+

k1k3

(β − γ)(β − a)

]
M0e

βt − k1k3M0

(β − γ)(γ − a)
eγt +

M0

(β − a)

[
k1k3

(γ − a)
− k2

]
eat, (8)

where a = αE − dE .

We further note that in the case of equal proliferation rates (α = αM = αG = αE) and death rates

(d = dM = dG = dE) that on addition of equations (2)-(4) we obtain

dN
dt

= (α− d)N → N(t) = N0e
(α−d)t,

where N = M +G+E. Thus the total population is dependent upon the rates of proliferation and death at

each stage as expected.

3.3.2 Parameterisation

We consider an initial cell population comprising of 100 IgM cells. In order to parameterise the rate con-

stants in the model our group determined the average rate of apoptosis (cell death) for each cell type to

be approximately 0.1/day, thus dM = dG = dE = 0.1/day. From this we assumed the rate of cell pro-

liferation would be considerably greater in order to maintain a healthy cell population, i.e. we assumed

αM = αG = αE = 0.5/day. Biologically we are interested in considering how each Ig population varies

in time for the case where the rate of transistion from IgM to IgG dominates over those of IgM to IgE and

IgG to IgE, which are considered approximately equal, i.e. k1 > k2 ∼ k3. Here we let k1 = 0.3/day and

k2 = 0.05/day= k3/.
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3.3.3 Results

Figure 6 demonstrates the variation in the IgM, IgG and IgE populations over a period of 10 days. Here

we see that there is an exponential like increase in IgG and IgE, but IgM remains relatively static over this

period. This is explained by the fact that the rates of transition out of the IgM state (cell death and transition

to IgG and IgE) are quite rapid in comparison to how fast cells are produced, such that the population

remains relatively constant during this period (β � 1). In comparison IgM cells transit quite rapidly to the

IgG state. Here the transition to IgE is much less such that the IgG population now has time to increase via

proliferation. This increase is subsequently passed onto the IgE population, albeit at a later time than that of

the IgG following the transition of cells to that state. This result is made further clear by considering how

the transition to IgE from IgM and IgG varies in time as shown in Figure 7.

We next wanted to see what influence the transition rates alone, i.e. in the absence of cell proliferation and

cell death, had on the variation of each population in time. As such we set the proliferation rate constants

and the death rate constants to be equal (αM = αG = αE = 0.5/day=dM = dG = dE). This led to the

results shown in Figures 8 and 9. In Figure 8 we see that the IgM population decays as cell transit to either

the IgG or IgE state. There is an initial rapid increase in the IgG population as cells quickly enter that state,

before moving onto the IgE one. The IgG cell population starts to decrease around day 6 to 7 as cells leave

that state for IgE with no further increases from cell proliferation. Similar to the previous case in which cell

proliferation dominated over cell death, the majority of cells entering the IgE state are from IgG as seen in

Figure 9; again a result of rapid transit to IgG from IgM and a slower transition directly from IgM.

3.3.4 Conclusions and future work

We have developed a simple linear ODE model of immunogloblin switching between the three states of IgM,

IgG and IgE. The model includes a basic exponential description of cell proliferation and death and has been

parameterised using currently available data and informed parameter estimates therefrom. For the current

given parameter set the model results show how cell transition rates and respectively cell proliferation (when

dominating over cell death) affect the transition to IgE from IgM and IgG; when the IgM to IgG transition

occurs more rapidly than that of IgM to IgE, cells have time to accummulate in the IgG state, which when

combined with a comparatively high proliferation rate leads to a large increase in the IgG and subsequently
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Figure 6: The variation in the IgM, IgG and IgE populations over a 10 day period as predicted by

equations (2)-(4). Here αM = αG = αE = 0.5/day, dM = dG = dE = 0.1/day, k1 = 0.3/day and

k2 = 0.05/day= k3/.

Figure 7: The variation in the IgE population from IgM and IgG over a 10 day period as predicted

by equations (2)-(4). Here αM = αG = αE = 0.5/day, dM = dG = dE = 0.1/day, k1 = 0.3/day and

k2 = 0.05/day= k3/. In this case the majority of cells coming to IgE are from the IgG state.
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Figure 8: The variation in IgM, IgG and IgE populations over a 10 day period as predicted by equa-

tions (2)-(4) when each cell state has equal rates of proliferation and death. Here αM = αG = αE =

0.5/day, dM = dG = dE = 0.5/day, k1 = 0.3/day and k2 = 0.05/day= k3/.

IgE populations. As the transition to IgE from IgM is much slower, these cells dominate the IgE populations

less.

Whilst various qualitative behaviours in each cell population can be obtained from this model for varying

parameter values, with in this case some informed by experimental data (cell death), a range of different

transit behaviour is possible. Thus it is imperative in the next stage of determining whether the hypotheses

considered here of IgM to IgG transiting more rapidly than IgM to IgG to IgE are correct or need to be

considered against others, that model results are compared with other experimental data.

3.4 A birth-and-death process

In [10], the authors suggested an individual-based model of CSR, which takes into account shift dependence

on the number of divisions. They simulate the model in discrete time; at each tick of the clock (12 hours)

cells are interrogated and their fate is decided according to the following scheme:

The cell object carries information about the number of divisions a cell has undergone and about the type of

antibody it is secreting. The advantages of this approach are that the transition rates can be made arbitrarily
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Figure 9: The variation in the IgE population from IgM and IgG over a 10 day period as predicted by

equations (2)-(4) when each cell state has equal rates of proliferation and death. Here αM = αG =

αE = 0.5/day, dM = dG = dE = 0.5/day, k1 = 0.3/day and k2 = 0.05/day= k3/. As in the case where

cell proliferation is much greater than that of death the majority of cells coming to IgE are from the IgG

state.
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Figure 10: The scheme of Yaish and Mehr

complicated.

We can base a simple birth and death process on this scheme; we assume that birth, death, and class shifts are

statistically independent processes. The simplest implementation of this idea gives reasonably manageable

formulae. If every tick of the clock is 12 hours, and the initial population is N0, then if Pb and Pd are,

respectively, division and apoptosis probabilities, then the number of cells surviving after m ticks is

Nm = [(1− Pd)(1 + Pb)]mN0,

while the number of cells surviving after m ticks having undergone k divisions is

Nk,m =

 m

k

 2kP kb (1− Pb)m−k(1− Pd)mN0.

Computing Nk,m/Nm shows that it is actually independent of Pd and has the right behaviour (we take the

probability Pb of division per cell between two 12 hour ticks to be Pb = 0.15):

The number of cells by tick m that have converted to IgG production is given by the formula

Nm,G = PMG

m∑
k=1

Nk,m

k∑
l=1

[(1− PMG)(1− PME)]l−1(1− PGE)k−l,

if we assume that the transition probabilities from IgM to IgG, PMG, from IgM to IgE, PME , and from IgG

to IgE, PGE , are all constant. Such a theory gives wrong predictions : the curves of Nm,G/Nm versus m

are concave, while the experimental data gives rise to convex ones, but the approach is sufficiently flexible

to allow improvements.
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Figure 11: Proportion of B cells having passed through k divisions versus k after 120 hours.

So if we assume that all these probabilities are functions of the division number m, e.g.

PMG = H(m− 2)α(1− exp(−βm)),

where H(·) is the Heaviside function, and α and β are positive constants, and similarly for PME and PGE

we have that the probability πMG(k) of having performed k divisions, shifting from IgM to IgG production,

and staying there is

πMG(k) =
k∑
l=1

(
l−1∏
s=1

(1− PMG(s))(1− PME(s))×

PMG(l)
k∏

r=l+1

(1− PGE(r))

)
.

Then the number of IgG-producing B-cells by the m-th division is given by (I am using the same notation

as for constant probabilities)

Nm,G =
∑
k=1,m

Nm,kπMG(k),

and thus the proportion we are after is Nm,G/Nm.

Similarly, the probability πME(k) of having performed k divisions, shifting from IgM to IgE production

either directly or via IgG production, is

πME(k) =
k∑
l=1

l−1∏
s=1

(1− PMG(s))(1− PME(s))×

PME(l) + PMG(l)
k−1∑
j=l

j∏
r=l

(1− PGE(r))PGE(j + 1)

 .
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Then the number of IgE-producing B-cells by the m-th division is given by

Nm,E =
∑
k=1,m

Nm,kπME(k).

and thus the proportion we after is Nm,E/Nm.

Figure 12: Proportions of IgG (blue) and IgE (yellow) producing cells versus number of divisions

In Figure 12 we assume that

PMG(l) = 0.2H(l − 2)(1− exp(−0.05l)); PME = PGE = 0.05H(l − 3)(1− exp(−0.05l)).

4 Discussion and Conclusions

4.1 Biological viewpoint

To date, while much is known about the cellular dynamics of the germinal centre reactions we still poorly

understand the molecular mechanisms that co-ordinate these processes. Several “key” transcription factors

have been identified that maintain cellular identity and regulate cell differentiation to plasma cells namely

BCL6, BLIMP, PAX5, XBP1, BATF and IRF4 [13, 14, 15]. However, we still know little about the mecha-

nisms that regulate and co-ordinate the early processes of the GC reactions and how these function to control

the dynamics of the class switching process.

We proposed to utilise mathematical modeling to help us to identify critical aspects of cellular behavior

that might influence the outcome of class switching and combine this with transcriptomic investigations
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to identify potential regulators of these activities. The mathematical modeling exercises highlighted the

importance of cellular flux (division versus apoptosis) in determining the outcome of the class switching

events and matching these to experimental data. In addition, it was found that some element of “division

counting” whereby the frequency of switching, apoptosis or proliferation changed as the cells divide was

critical to obtaining data from the models that accurately matched experimental results. These findings have

not only led the interpretation of the transcriptomic analyses (see later) but have also shaped our future plans

to continue this work. We are now in the process of investigating the changes in the rates of apoptosis,

cell cycle progression and class switching as a function of division number. Preliminary data from these

studies has identified a block in cell cycle progression that appears to occur at the G2 phase of the cell

cycle, resulting in an accumulation of cells at this point that is not relieved until later time points in the

culture. These data are consistent with our transcriptomic studies that identify a number of known cell cycle

checkpoint pathways operating in these early time points. We now plan to continue these studies, allowing

us to significantly refine our current mathematical models and further interrogate the key aspects of cellular

behavior that control the germinal centre activities.

Further to these studies, initial discussions with Varun Manhas about his finite element PDE solver high-

lighted the importance of our observations that significant cell movement and accretion occur during our cul-

tures. This conclusion is supported by our transcriptomic analyses that identified chemokine genes (CCL22

and CCL17) as being significantly up-regulated during the cultures. We have now undertaken studies to

investigate the rôle, and potential regulators, of these phenomena and their wider importance in determining

the outcome of cell fate.

Our investigations of the transcriptomic datasets have identified a number of genes of significant interest in

both the regulation of cell flux and behavior in our cultures as well as specific aspects of class switching.

Specifically: FGD3 is a Rho GTP exchange factor that is known to regulate the actin cytoskeleton and cell

motility [16]; KIF18A is a microtubule motor that is involved in cell migration; while MIIP may inhibit

cell migration and regulate mitotic progression. These proteins warrant further investigation for their rôle in

regulating the cell migration and accretion phenomenon as well as the cell cycle blockade discussed above.

Similarly, CCL17 and CCL22 are potentially very interesting targets; both are known to be powerful Th2

chemoattractants and act to mediate T:B cell interactions during the germinal centre response (reviewed

by [17]). However, the potential rôle of these chemokines in B cell chemotaxis has not been previously

documented. In support of our hypothesis that these molecules may mediate these activities, is the finding
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that their receptor (CCR4) is also up-regulated in these B cells.

NFIL3 has recently been investigated in great depth and found to be central to the regulation of class switch-

ing to IgE [18]. We believe the identification of this transcript by our analyses validates the utility of our

protocol and likelihood of finding novel regulatory factors.

More specifically focused towards the regulation of class switching to IgE, IKZF2 (Helios) belongs to a

family of transcription factors (Ikaros family) that have previously been implicated in the regulation of class

switching to IgE [19] and are well known to control lymphoid development [20]. We also believe that Ikaros

factors may play an important rôle in directly targeting AID (Activation Induced cytidine Deaminase) to the

Ig locus (manuscript under review).

BATF has recently sparked intense interest for its rôle in coordinating class switching [15, 21]. However,

very little work has been done on BATF3 with regards its B cell functions and it has not been previously

studied with regards regulating class switching. We now propose to follow up these studies with more

in-depth validation of the expression of the targets accompanied by siRNA mediated interference of their

expression to establish their rôle in the regulation of IgE expression.

4.2 Modelling viewpoint

1. The individual-based and birth-death models indicate that assuming constant division and apoptosis rates

is sufficient to reproduce the experimental division-number distributions. The birth-death model also allows

easy computation of apoptosis and division rates.

2. All our approaches also show that the kinetics of early-stage shift to IgG (and so perhaps also to IgE) is

not well described by models that assume constant shift rates; this confirms the findings in the literature that

shift rates are division-number dependent.

3. Many of our approaches are flexible enough to incorporate time-inhomogeneity and spatial imhomogene-

ity.

4. The modelling framework of Yaish and Mehr can be modified: as it is, it ties up division and shifting, but

in reality failure to divide is indicative of a checkpoint problem and so could be tied up with death. That the

processes are not independent raises interesting challenges for the Gillespie approach and for the birth-death
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one.

4.3 Further work

The analyses above have emphasised the importance of “cell flux” in determining the outcome of our B cell

cultures. To improve our modeling of these events, it is clear we need to understand better the dynamics of

cell division and apoptosis as the cultures progress, and crucially as the cells undergo an increasing number

of divisions. To that end, we are now in the process of following apoptosis and cell cycle progression as a

function of cell division using the tracking dye CFSE (as utilised in [6]). We believe a better understanding

of these dynamics will allow the design of better mathematical models, which will in turn identify and allow

us to test other aspects regulating the process of class switching.

In addition, we have initiated preliminary studies to investigate the requirement of the cell clumping phe-

nomenon for these activities: By visualising the aggregation of cells microscopically over time (in conjunc-

tion with the studies described above), it is evident that this process begins before cell proliferation and must

be dependent upon active cell movement. Preliminary data suggests that if cell aggregation is prevented (by

intermittent mechanical disruption of clumps), then cell cycle progression (and in turn division) is retarded.

We now intend to investigate this phenomenon in more detail using more sophisticated (and less damaging)

methods to inhibit aggregation such as culturing cells in suspension using orbiting platforms. As described,

the outcome of these manipulations on cell cycle progression, cell division, apoptosis and class switching

will then be investigated.

Once mechanical methods to disrupt aggregation have been investigated, we intend to study the molecular

mechanisms driving this event. The bioinformatic analysis of microarray data described, identified two

chemokines known to be involved in mediating T:B cell interactions CCL17 and CCL22. We propose to

utilise specific, commercially available, antibodies to block the activity of these two chemokines, and their

putative receptor (CCR4, described above) to investigate their rôle in the aggregation process. In addition the

bioinformatics investigation identified MIIP, a gene thought to regulate cell migration and mitosis, as being

significantly differentially expressed. Future studies will investigate the expression of this gene at both the

RNA and protein level in these cultures, particularly following blocking of aggregation and “knock-down” of

its expression by siRNA methodologies. Similar studies are planned for the other genes of interest described

above to begin to determine their rôle in regulating these key aspects of B cell biology.
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5 Impact on NC3R Agenda

To date, nearly all the research in this area has been carried out in mice, utilising in vitro stimulation of

primary murine B cells (isolated post–mortem from the spleen and bone marrow) and mouse models of

asthma and allergic disease. These studies use large numbers of animals: typically 3–10 mice per in vitro

experiment and up to 50 for a full in vivo disease model study (particularly if structural lung changes are

investigated). These studies are associated with animal welfare concerns; asthma disease models require

repeated dosing of inhaled allergen over the course of several weeks and long term kinetic investigations of

circulating and lung lavage cell numbers over the course of months in mice with impaired life expectancy.

However, these mouse models of disease are far from perfect, mice do not get asthma, while we (and others)

have shown that class switching appears to be regulated differently in mice versus man [22]. Our simple hu-

man ex vivo culture system lends itself easily to manipulation and downstream analysis of consequences and

mechanisms. We wish to extend its utility and demonstrate its potential to investigate complex regulatory

networks. The development of mathematical models during the study group has already highlighted some

key aspects of B cell biology that appear to affect the process of class switching. The importance of these

aspects had not been previously recognised in studies of the mouse which show different kinetics of B cell

division and many other key aspects of IgE biology from the human system. Further, in combination with

our microarray studies we have the ability to identify and manipulate the expression of potential regulatory

components and investigate their rôle in controlling IgE production.

Publication of these studies will highlight the utility of this model system both to identify novel regulators

and to test potential therapeutics that could not otherwise be studied using murine models. We hope that

this would not only contribute to the understanding of asthma and allergy, but also demonstrate the wider

application of our system to the general immunobiology community, encouraging the uptake of human ex

vivo tissue models and reducing current reliance on animal experimentation.
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