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Beyond Heart Rate Variability: Using attractor reconstruction with all the data in a blood pressure signal 

for feature extraction  

Professor Philip Aston 

University of Surrey 

The multitude of heart rate variability (HRV) methods have dominated the analysis of heart data (blood 

pressure, ECG, etc.) for over two decades. All these methods start by extracting the heart beats from the data 

and this reduced time series is then analysed in many ways. However, this approach discards most of the data 

before commencing any analysis and so cannot detect any changes in the waveform shape. In contrast, our 

approach analyses all of the data from a physiological signal using attractor reconstruction. The naturally 

occurring baseline variation is removed by projecting the attractor onto a plane. Quantitative measures can be 

derived from the reconstructed attractor and traced out as a time window moves through the data. This 

approach can detect changes in the shape of the waveform that HRV methods cannot detect. We have applied 

this approach to two problems: 

1. Detection of contractility changes using blood pressure data. Excellent agreement has been obtained when

compared with changes in left ventricular pressure.

2. The early detection of sepsis for which our results are significantly better than those obtained using systolic

or diastolic blood pressure.
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Beyond Heart Rate Variability: Using Attractor Reconstruction With

All The Data in a Blood Pressure Signal for Feature Extraction
Philip J. Aston1, Manasi Nandi2, Mark I. Christie2 and Ying H. Huang1

1Department of Mathematics, University of Surrey, Guildford, UK
2Institute of Pharmaceutical Science, School of Biomedical Sciences, King’s College London, London, UK
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Introduction

•Blood pressure (BP) and ECG data at high sampling

frequency is available over long periods of time

•Detection of subtle changes in the data can indicate

early onset of disease offering the opportunity for early

clinical intervention

•Can we extract diagnostic information from the data?

Attractor Reconstruction Method

•We use all the data, not the beat-to-beat (RR) intervals

• So we can detect changes in the shape of the waveform
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Figure 1: Blood pressure data.

Our method consists of four steps:

1. Reconstruct the attractor using all the data

• Little information can be gleaned from a compressed

plot of blood pressure against time

• It would be better to plot the data in phase space

• Problem: We only have one variable!

• Solution: Use Takens’ method for reconstructing

attractors using delay coordinates [1]

• If the blood pressure signal is x(t), we define

y(t) = x(t− τ ), z(t) = x(t− 2τ )

where τ > 0 is a fixed time delay

•We can now plot the trajectory (x(t), y(t), z(t)) in a

three-dimensional phase space (see Fig. 2)
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Figure 2: Plot of the data in

phase space using τ = 31ms.
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Figure 3: Plot of the attractor in

Fig. 2 in the (v, w) plane.

2. Remove baseline variation

•There is natural variation in the blood pressure which

we want to remove

• If x(t) → x(t) + c then there is a similar shift in y and z

• In the phase space, we then have

(x(t), y(t), z(t)) → (x(t) + c, y(t) + c, z(t) + c)

= (x(t), y(t), z(t)) + c(1, 1, 1)

•We define the new variables

u = 1
3(x + y + z), v = 1√

6
(x + y − 2z), w = 1√

2
(x− y)

•The (v, w) plane is perpendicular to the vector (1, 1, 1),
which is the direction associated with vertical move-

ment in the signal (see Fig. 3)

3. Construct a density

•We construct a density in the (v, w) plane since this is

more useful than a blur of lines (see Fig. 4)
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Figure 4: The density generated from the attractor in Fig. 3.

4. Generate time traces

•The density is constructed using a 10s time window

•Various scalar measures are derived from the density

•The time window is moved through the data to gener-

ate a collection of time traces of these measures

Window Start Time (m)
25 30 35 40

A
ve

ra
ge

 H
R

 (
bp

m
)

0

200

400

600

800

Window Start Time (m)
25 30 35 40

P
ul

se
 P

re
ss

ur
e

 (
m

m
H

g)

0

50

100

150

Figure 5: Time traces derived from the density.

Comparison with Heart Rate Variability

HRV:

•HRV reduces the large volume of data by considering

only the beat-to-beat (RR) intervals

•There are many ways of analysing this reduced time

series and using it to diagnose various diseases [3]

•All the data regarding the shape of the waveform is

discarded which may contain useful diagnostic infor-

mation

•Accurately determining the peaks in the data can be

difficult

Attractor Reconstruction:

•Our method uses all the available data

• It can detect changes in the shape of the waveform that

HRV cannot detect

•We can detect both cardiac and vascular changes

•The method is robust as artefacts in the data have little

effect on the density

•Removal of baseline variation is very simple

•This approach can be used for any approximately pe-

riodic signal e.g. ECG, PPG, respiratory waveform

Example
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For this data, there is no significant change in heart rate

over the 15 minute time interval

HRV:
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Conclusions

•There is a significant change in the data at 13 minutes

•This change is not detected by the HRV parameters

•The change is very clearly detected by the AR maximum

density parameter

•The AR pulse pressure measures also show a signif-

icant change in the variability and the magnitude of

the pulse pressure (amplitude) at the same point

•The blood pressure data changes from quite variable

to almost periodic. This variability (or lack of it) is

often associated with health (or disease)

• This significant change in the data is detected by the AR

parameters, but is not detected by the HRV parameters

Contractility

•Drugs can cause unwanted changes in the contractility

of the heart which can result in failure of a new drug

•Changes in contractility can be characterised by

changes in the left ventricular pressure (LVP) [4] mea-

sured with a probe in the heart

Q: Can drug induced changes in LVP be detected

using a peripheral blood pressure (BP) signal?

•A trace from an adaptation of our method has been

compared with the data for LV dP/dtmax

•Results have been obtained for 4 animals with either

high dose itraconazole (negative inotrope) or high

dose pimobendan (positive inotrope)

Results

Average correlation coefficients for the 4 animals are:

Itraconazole Pimobendan

0.9784 0.7624

A linear transformation can be used to compare our re-

sults with the LVP data
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Conclusion

•Changes in LV dP/dtmax have good correlation with our

measure extracted from blood pressure data for both

a positive and a negative inotrope

3Rs Impact

•Replacement: Blood pressure data from past experi-

ments can be re-analysed to obtain new results

•Reduction: Blood pressure data is inherently noisy

and so extracted features are often noisy too. Our

traces are less variable and show a larger drug related

change than traditional measures and so a drug effect

can be determined using fewer animals

•Refinement: One aim of our work is to provide an

early diagnosis of disease. Early detection means that

animal experiments can be run for a shorter time and

terminated at a less severe time point
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Cardiovascular Modelling to Support the 3Rs 

Dr Michael Chappell 

University of Warwick 

Mean arterial pressure (MAP) and heart rate (HR) are important factors in assessing the safety of novel 

compounds. While MAP and HR are measured simultaneously, and are known to be interrelated; the impact on 

each variable is typically quantified with two separate drug effects. 

Hemodynamic modelling incorporates the feedback from MAP on other cardiovascular variables, and thus 

captures the impact on both endpoints through a single mechanism of action. This can potentially improve the 

predictivity of safety testing, by capturing the behaviour of homeostasis with physiological parameters. 

The complexity of such models places a greater burden on the need for a priori testing of structural 

identifiability, and the robustness of parameter estimates in practice. 

We present structural identifiability analysis and parameter estimation results for three hemodynamic models. 

The analysis clarifies the suitability of models for different experimental conditions, and the parameters that 

must be fixed to ensure identifiability. Appropriate use of hemodynamic models has the potential to reduce 

animal use in cardiovascular safety testing, and in developing effective strategies to manage undesired 

effects. 



Structural Identifiability analysis of 
Cardiovascular Feedback Models 
T. Abdulla1, N.D. Evans1, J.W.T. Yates2,  T. A. Collins2, J.T. Mettetal2, M.J. Chappell1 

1School of Engineering, University of Warwick, UK. E-mail: M.J.Chappell@warwick.ac.uk 
2AstraZeneca, Cambridge, UK 

Drugs influence the cardiovascular system in a wide variety of ways; either as part 
of an intended treatment or as an undesired side effect. Mean arterial pressure 
(MAP) and heart rate (HR) are important factors in assessing the safety of novel 
compounds. While MAP and HR are usually measured simultaneously, and are 
known to be interrelated; a drug’s effect on each variable is typically quantified 
separately. There have been a few attempts to model the combined drug effect on 
hemodynamic variables by using homeostasis models with MAP negative 
feedback (Francheteau et al. 1993; Snelder et al. 2014). 

The advantage of these models are an improved understanding of effects on the 
cardiovascular system earlier in preclinical development, and the potential to 
better anticipate the magnitude effects in humans. However, the complexity of 
such models places a greater burden on the need for a priori testing of structural 
identifiability, and the robustness of parameter estimates in practice. 

Structural identifiability analysis determines whether it is possible to uniquely  
estimate model parameters, based on the structure of the model and 
experimental observations available; assuming noise-free data.  

Introduction 

Cardiovascular safety is one of the leading reasons for drug attrition and 
withdrawal. By improving confidence in hemodynamic models, this work has the 
potential to improve their predictive power. Making better use of experimental 
data enables the reduction and refinement of animal use in cardiovascular safety 
testing, and in developing treatments to manage hemodynamic effects.  

Haemodynamic variables are fundamentally related as follows: 

CO = HR.SV  

MAP = TPR.CO  

Where HR is Heart Rate, CO is Cardiac Output (blood flow), SV is Stroke Volume 
(volume of blood ejected in each heart beat), TPR is Total Peripheral Resistance 
and MAP is Mean Arterial Pressure. 

Several feedback mechanisms respond to changes in MAP and act to maintain 
blood pressure homeostasis over the short and medium term. Within their own 
limits, heart rate responds to maintain blood pressure, and TPR responds via 
blood vessels dilating and contracting. There is a need for simplified models 
represent this complex feedback in aggregate terms. 

 

Snelder et al. (2014) 

 Linked turnover  equations 

 Proportional feedback on HR, TPR and SV. E.g:  

 

 

 

 

 

Francheteau et al (1993) & Cheung et al. (2012) 

 Proportional and derivative feedback 

 Baseline MAP as a setpoint.   

 External control state U. E.g. 

 

 

 

 

 

Reduced Model 

 Based on Cheung et al (2012). 

 Proportional feedback 

 Baseline MAP as a setpoint 

 No external control state. E.g.  

 

 

Models of the Cardiovascular System 

 

 

Results 

𝑑𝐻𝑅

𝑑𝑡
= 𝑘𝑖𝑛𝐻𝑅 ∗ 1 − 𝐹𝐵 ∗ 𝑀𝐴𝑃 ∗ 1 + 𝐸 − 𝑘𝑜𝑢𝑡𝐻𝑅 ∗ 𝐻𝑅 

𝑘𝑖𝑛𝐻𝑅 = 𝑘𝑜𝑢𝑡𝐻𝑅 ∗ 𝐻𝑅𝑒𝑞, 

 

+ 

- 
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𝑑𝑡
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𝐻𝑅𝑒𝑞 ∗ 1 − α ∗ 𝑈 − 𝐸 − 𝐻𝑅

𝜏𝐻𝑅
−

𝑑𝐸
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𝐸 = 𝑑𝑟𝑢𝑔 𝑒𝑓𝑓𝑒𝑐𝑡 

𝑑𝑈

𝑑𝑡
=

𝑎𝑐 ∗ 𝑀𝐴𝑃 − 𝑀𝐴𝑃𝑒𝑞 +
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− 𝑈

𝜏𝑈
 

 
+ 

- 

𝑑𝐻𝑅

𝑑𝑡
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𝐻𝑅𝑒𝑞 ∗ 1 − α ∗ (𝑀𝐴𝑃 − 𝑀𝐴𝑃𝑒𝑞) − 𝐸 − 𝐻𝑅

𝜏𝐻𝑅
−

𝑑𝐸

𝑑𝑡
 

 

 

The reduced model had the fewest parameters and state equations, and was able 
to adequately describe the available MAP and HR data. It could potentially offer 
an improved choice of model in terms of identifiability and parameter estimation. 

The inclusion of rate-sensitive feedback, as in the Cheung et al. (2012) model may 
provide a more accurate physiological representation, and be preferred in certain 
situations. 

However, both Cheung et al. (2012) and the reduced model require a priori the 
value of SV to be fixed, meaning that they cannot represent or estimate the 
effects on SV. (Alternatively, if a drug is known to effect SV, the value of TPR could 
be fixed instead of SV). The Snelder et al. (2014) model is more ambitious in 
including SV and TPR simultaneously. Well parameterised, this model could serve 
a range of applications in quantifying, translating and predicting hemodynamic 
effects.  

Different strategies may be preferred in the models to implement circadian 
baseline functions in MAP and/or HR. For example, a cosine function can be used 
on the MAP equilibrium set point in Cheung et al. (2012)  and the reduced model,  
and in Snelder et al. (2014) this instead amplifies the production rate of HR.  The 
circadian rhythm could not be distinguished from background variability in this 
case. This is not an ideal scenario for parameter estimation, but reflects a 
common situation ,with MAP and HR evaluated at hourly timepoints.  

The feedback models provided better fits than using two separate drug effects on 
MAP and HR. 

Structual identifiability analysis of the four models was performed using a 
differential algebra approach (Evans et al. 2013) and the exact algorithm rank 
approach (Karlsson and Anguelova 2012). The model of Snelder et al. (2013) 
requires measurement of cardiac output to be structurally globally identifiable 
(SGI).  Francheteau et al. (1993) was confirmed to be SU, and Cheung et al. (2012) 
to be SGI, conditional on fixing the value of stroke volume. The model should be 
used with an awareness of this assumption 

 

 

 

 

 

 

 

 
*SGI with a fixed value of SV or TPREQ, otherwise SU 
SGI: Structurally globally identifiable, SU: Structurally unidentifiable 
 

Parameter estimation was performed for SGI models on HR and MAP data from 
rat telemetry (n=8) Nifidipine  (0, 3 and 30mg/kg) and Amphetamine (0, 0.3 and 
3mg/kg) studies.  

All three SGI models could be fitted to the data. Some system parameters could 
not be robustly determined in the Snelder 2014 model, without fixing some 
parameters (baseline SV and TPR were fixed due to their clear physiological 

meaning). This suggests that it could be difficult to distinguish effects on SV and 
TPR in practice from HR and MAP data alone. 

 
Model 

Observations 

HR & MAP HR, MAP & CO 

Francheteau 1993 SU - 

Cheung 2012 SGI* - 

Reduced Model SGI - 

Snelder 2013 SU SGI 

Snelder 2014 SGI SGI 

References: Cheung et al. (2012). Eur. J. Pharm. Sci., 46, 4, 259–271., Evans et al. (2013). Automatica, 49, 1, 48–57., Francheteau et al. (1993). J. Pharmacokinet. Biopharm., v21, 5, 489–514., 

Karlsson and Anguelova (2012).  16th  IFAC  Symposium  on  System Identification, 941-946., Snelder, et al. (2013). Br. J. Pharmacol., 169, 1510–24., Snelder, (2014). Br. J. Pharmacol., 171, 5076–92. 

Discussion 

3Rs Impact 
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Development and application of evidencing and argumentation tools in the NC3Rs CRACK IT Virtual 

Infectious Disease Laboratory and Virtual Fish Ecotoxicology Laboratory Projects  

Professor Mark Coles 

SimOmics Ltd / University of York 

Mathematical and computational models have the potential to accelerate medical research and reduce and 

replace the use of animals in therapeutic discovery and development and toxicology testing.  This is because 

simulations provide a platform to rapidly predict outcomes of complex phenomena (e.g. immune function) 

without the limitations inherent in animal experiments.  Models permit testing of a large number of variables 

and capacity to provide key evidence for clinical trial design and regulatory approval. However, simulations are 

inherently dependent on processes and assumptions that underpin their design, these are frequently unclear 

and leads to a loss of confidence in the intended users.  One method to address this challenge is to utilise a 

robust methodology to evidence the models in an open and transparent format that is accessible to all 

potential users, from basic research scientists, regulators and modeller to corporate management.  This 

mitigates risk, provides a platform to understand the model as scientific understanding of complex biological 

systems evolve.  Through taking a robust approach to the evidencing and argumentation process it is possible 

to convince key stakeholders that a given computational / mathematical model is appropriate and have 

confidence in the relationship between simulation outcomes and real-world data. 



Evidenced-based Virtual Laboratories to Support the 3Rs

Background: SimOmics is funded by NC3Rs and InnovateUK to develop virtual laboratories to reduce and replace animals in pharmaceutical development 
and testing.  SimOmics is developing software tools and modelling technologies to assist in evidence-based decision making in areas including infectious 
disease and ecotoxicology risk assessment. SimOmics technologies include software to generate argumentation structures, automated generation of 
diagrams to reveal model structures and automated tools for the detailed analysis of computational and mathematical models, all of which can be linked 
via a novel web-based user interfaces for high degrees of transparency.

2. Virtual Fish Ecotoxicology Laboratory (VFETL)

3Rs and fish toxicology: All new active pharmaceutical ingredients (API)
must undergo an environmental risk assessment (ERA) before being
authorised. Currently tens of thousands of fish are used worldwide as
part of API ERAs. Development of predictive in silico models already has
the potential to significantly reduce animal use (3Rs) and reduce R&D
costs around the ERA of pharmaceuticals. VFETL: Our approach will
characterise the movement of an API from the patient, through the
wastewater and river systems, into fish tissues and predict the apical
and non-apical effects on individuals and populations. By understanding
the pathway from patient to effect, it will be possible to develop an
optimum experimental testing strategy for an API. Working closely with
AstraZeneca and University of York to deliver commercial product by
2018.

3. Virtual Infectious Disease Laboratory (VIDL)

4. Membrane Domain Specific Language (MDSL)
A modelling language developed to support mechanistic modelling of 
cellular and/or intracellular processes with support for membrane
bound molecules using a concise grammar. 

An extensive toolset ensures that even large and complex models are 
transparent and easily interrogated with auto-diagram generation 
allowing easy visual inspection structure of the model and animation 
of the simulation data giving quick visual feedback on the dynamics. 

6. Summary
• We are developing an integrated web-based system for the

intelligent analysis of APIs in the environment and assessment of
drug therapeutics for infectious disease

• Focus is on developing commercially viable 3Rs technologies that
can be translated to a wide variety of 3Rs challenges

Funded by:

5. Evidence and Transparency Tools
Underpinning our virtual laboratories is a clear evidence base that can
be summarised using a variant of Goal Structuring Notation (GSN)
adapted from critical systems engineering. This allows for the
construction of logical arguments underpinning evidence relating to
data , assumptions in models and assessment of risk. Users will be
able to develop their own evidence base, and critical, assess those of
others.

ArtooPro: Use of logical arguments based on safety systems engineering to increase 
confidence in models http://artoo.simomics.com

Web: http://www.simomics.com
Email: jon.timmis@simomics.com 

leishsim.simomics.com - www.simomics.com – vfetl.simomics.com

LeishSim: Part of a wider team developing a virtual platform that models
infection and the host response to the Leishmania pathogen for basic
research and enhances new target development in infectious diseases.
Leishmania, one of the most neglected tropical diseases, yet ranked 9th

in analysis of global burden of disease, with
an associated mortality amongst parasitic
infections second only to malaria. A free
virtual lab, focussed on Leishmania, will
be available to the community by mid 2017.

Paul Andrews, Adam Nellis, Ed Clark, Mark Coles, Jon Timmis 
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Investigating the role of lactate and proton efflux in extracellular acidification using a pH dependent in 

silico model of hepatic glycolysis  

Ross Kelly 

Liverpool John Moores University 

Extracellular flux analysis (EFA) is gaining momentum as a versatile high throughput method of assessing 

cellular bioenergetics for a plethora of biological points of interest, boasting inclusion in over 1500 peer 

reviewed publications. Commonly used as a method of investigating drug induced mitochondrial 

toxicity/dysfunction in a wide variety of different cellular systems, EFA using any of the XF analysers (Seahorse 

machines) is accomplished by measuring rates of oxygen consumption and proton efflux. The majority of 

investigations centre on changes cellular respiration, measured via changes oxygen consumption rate (OCR), 

with the concomitant extracellular acidification rate (ECAR) measurements, indicative of glycolytic flux, often 

considered a secondary measurement likely due to the ambiguous nature of ECAR. 

In order to investigate lactic acid as the predominant driving force of ECAR during extracellular flux analysis, a 

mathematical model of hepatic glycolysis that is pH-dependent with respect to reaction equilibria and enzyme 

kinetics, capable of computing a dynamic pH time course as a function of glycolytic flux was constructed. 

Recognising that lactic acid exists as its lactate anion and a proton at physiological pH prompted ECAR 

measurements to be simulated using the liver specific monocarboxylate transporter 1 (MCT1) flux. The model 

was then aligned with in vitro EFA data using HepG2 cells, assessing the changes in ECAR as a function of 

extracellular glucose concentrations illustrating a relationship between the GLUT2 transporter Vmax parameter 

and ECAR. Finally, the model was used to simulate the effects of extracellular pH on ECAR highlighting the need 

for care when using compounds that may alter extracellular pH. 



pH – Dependent Model Of Human Hepatic Glucose Metabolism

1Applied Mathematics, Liverpool John Moores University, UK. 2MRC Centre for Drug Safety Science, University of Liverpool, UK. 3GlaxoSmithKline, R&D Ware, UK. 

Ross Kelly1, Amy Chadwick2, Joe Leedale2 Andy Harrel3, Steven Webb1. 

Introduction

References

• A pH‐dependent in silicomodel of human hepatic glucose metabolism that accounts for proton buffering and rapid metal cation binding was successfully constructed.
• Coupling detailed thermodynamically driven, charge and mass balanced mathematical models with in vitro extracellular flux analysis has the potential to yield mechanistic insight into

“off‐target” toxicities such as drug induced mitochondrial dysfunction. 
• In silicomethods combined with in vitro techniques allow intelligent prediction and assessment of drug toxicity, facilitating the reduction of animal models.

Conclusions
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Hepatic Glucose Model
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• Illustration of model components. The model includes the major metabolic pathways glycolysis,
gluconeogenesis and glycogenolysis, as well as additional reactions for ATP synthesis and
production by oxidative cellular respiration (OP).

• Model was constructed using Matlab (2015b)

Biochemical Species

Abbreviation  Species
GLC Glucose
ATP Adenosine Triphosphate
ADP Adenosine Diphosphate
AMP Adenosine Monophosphate
G6P Glucose‐6‐phosphate
F6P Fructose‐6‐phospate

F16BP Fructose‐1,6‐bisphosphate
DHAP Dihydroxyacetonephosphate
GA3P Glyceraldehyde‐3‐phosphate
1,3‐BPG 1,3‐bisphosphoglycerate
2,3‐BPG 2,3‐bisphosphoglycerate
3PG 3‐phosphoglycerate
2PG 2‐phosphoglycerate
PEP Phosphoenolpyruvate
PYR Pyruvate
LAC Lactate
G1P Glucose‐1‐phosphate
GLY Glycogen
UTP Uridine Triphosphate
Pi Inorganic Phosphate

In Vitro Glucose Metabolism 
Biochemical Reactions

Abbreviation Reaction
GLUT2 Glucose Transporter
GLK Glucokinase

G6Pase Glucose‐6‐phosphatase
PGI Phosphoglucose Isomerase

PFK Phosphofructokinase
ALD Aldolase

TPI Triosephosphate Isomerase
GPD Glyceraldehyde‐3‐phosphare Dehydrogenase

PGK Phosphoglycerate Kinase
PGM Phosphoglycerate Mutase

EN Enolase

PK Pyruvate Kinase
LDH Lactate Dehydrogenase

MCT1 Monocarboxylate Transporter 1
G1P1 Glucose‐1,6‐phosphate Isomerase

UGT Glucose‐1‐pgosphate uridyltransferase
GS Glycogen Synthase

NDK Nucleoside Diphosphokinase
ATPase ATP Hydroylsis

OP Cellular Respiration

Discussion

Proton & Ion Binding
The state with i protons bound to reactant A is referred to as [AHi]. Considering only proton binding, the total concentration of L

is given by (1.0) and the concentration of A with a single protonation is given by (1.1). Here, k1denotes the dissociation constant.
Iteratively accounting for N protonations leads to the general equation (1.2) [3‐5].
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Relating the total concentration with the least protonated form of the reaction gives us (1.3). This conversion is known as the
binding polynomial P. Using this method, the model state variables correspond to the reactants, the sum of all species. Therefore,
the amount of protonated ATP can be computed using (1.4), where [ATP] corresponds to the model state variable [4‐5].
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Thermodynamically Derived Equilibrium Constant Keq
The equilibrium constant for a reaction may be derived using the ΔrG

0 the Gibbs free energy change for the reaction. For
reaction (2.0), the expression for Keq may be written in terms of ΔrG

0 (2.1), in terms of reactant concentrations (2.2) using
their binding polynomials, allowing inclusion of respective proton and ion binding [5].
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Sensitivity Analysis
Model Parameter Sensitivity

• Model parameter sensitivity is expressed as the % mean change of
variable time course solutions altering all 118 model parameters
within the range of ‐99 to +400% of their original values.

• Parameters that induce >10% sensitivity are classed as sensitive.

• The parameters Keq LACT and Keq LDH
were found to be the most sensitive with
respect to extracellular pH changes using
the same % mean sensitivity analysis.

Extracellular [H+] Sensitivity (ECAR)

• In vitro hepatic glucose metabolism was measured using extracellular flux analysis (Seahorse) in order to validate the model. HepG2 cells were deprived of
extracellular glucose for 1 hour before analysis, glucose injection at t = 16 min (black line (a,b)) with 10 different concentrations (0.1 mM – 25 mM).

Glucose metabolism (glycolytic flux) accounts for a significant portion of cellular bioenergetics as a direct source of ATP, and as a molecular precursor source for other energy producing
systems such as the mitochondria via the TCA cycle. As a result, perturbations of cellular respiration, often as a result of “off‐target” drug induced mitochondrial toxicity, may be
observed by compensatory effects on glycolytic flux [1].
• In vitro, extracellular acidification rate (ECAR) is the predominant method of measuring glycolytic flux, with lactic acid postulated to be the source main of acidification [1].
• As a biological system of high importance, particularly for drug toxicity, in silicomodels of hepatic glucose metabolism already exist [2].
• However, a comprehensive pH‐dependent model that includes dynamic proton buffering and metal cation binding within hepatic cellular respiration and glucose metabolism has yet

to be presented.

Aims

a) b)

• Construct pH‐dependent mathematical model that includes dynamic proton
buffering and metal cation binding

• Illustrate the models ability to replicate in vitro hepatic glucose metabolism

ECAR Simulation

• Experimental design: A) Cell seeding incubation ‐720 min,
B) Media removal – 60 min, C) glucose injection (5 mM), D)
ECAR measurement / simulation – 90 min.

• The pH‐dependent hepatic glucose
metabolism model simulates the
fundamental characteristics of cellular
hepatic bioenergetics.

• This model is able to simulate ECAR via the
MCT1 flux (Figure c), lending credibility to
Lactic acid efflux as the driving factor of
ECAR.

• Readjusting the MCT1 flux by fitting to in
vitro data allows the model to be used
synergistically with extracellular flux
analysis, providing an enhanced platform
from which to predict and assess drug
induced bioenergetic impairment,
reducing the usage of animal models

c)

NC3Rs Impact
• Approximately 18000 rodent animal models were

used for assessing toxicity, 13000 of which were
used by pharmaceutical industries.

• Evidently, there is a clear need to develop
alternative methods for the assessment of toxicity.

• This research coupled with the existing EFA
toxicological data, could be used as a screening
tool in early development. It can also be used as
part of a weight of evidence approach in risk
assessment.

• Perhaps the key use of this research is to glean
more information from in vitro toxicity assessment
via the in silico coupling, thereby increasing the
efficiency of experimental design thus reducing
the use of animal models.

ECAR Sensitivity

• Changes in model ECAR after parameter perturbations in
the form of sensitivity analysis. Vmax GLK, Km DHAP and
Keq PGYM were changed from ‐99 to 400 % and Changes in
ECAR were measured.
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New possibilities in Mathematical Toxicology 

Marko Raseta 

University of York 

Bayesian Networks have recently been advocated to predict hazard and potency class of chemicals in the 

context of skin sensitization by using only animal-free assays. We have used developments in probability and 

statistics to both simplify and generalize these initial results. Our new approach provides robust procedures for 

constructing Bayesian Networks, avoiding earlier pitfalls involving data imputation, loss of information and 

cross-validation while maintaining (or improving) the accuracy of hazard and potency prediction. 

Importantly, our methods use Machine learning, avoiding need for mechanistic knowledge of the biological 

processes in question. This gives us hope that Bayesian Networks may be successful in general toxicity 

prediction using only Machine Learning and animal-free assays. In this spirit preliminary results for liver 

carcinogenicity, where the underlying biological mechanisms are much less understood, will be discussed. 

By extending this probabilistic thinking, we have also developed a rigorous framework to derive optimal 

integrated testing strategies for toxicity assessment using animal-free test alone. We combine a population 

model (accounting for individual-level differences in exposure and in reaction to that exposure) with an explicit 

cost structure (including both testing and misclassification costs) to derive optimal integrated testing 

strategies based on the powerful mathematical machinery of Markov Decision Problems. It turns out that, even 

in the simplest set-ups, optimal policies turn are typically adaptive. In other words, our mathematics 

demonstrates that one-size-fits-all testing policies cannot possibly be optimal.
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Exploring the use of Bayesian statistical models to reduce the number of animals in control groups 

Ros Walley and John Sherington 

UCB 

Many of the in-vivo models used in pre-clinical pharmaceutical research are run repeatedly over a period of 

time with a consistent protocol and control group(s) to test different compounds. Typically, historic data from 

the control group of previous studies are ignored when running a new study. We have used Bayesian statistical 

models to incorporate information from the historical controls into a new study, down-weighting this 

information to allow for variation between studies. This Bayesian methodology can allow the number of control 

animals in the current study to be reduced or, in some cases, a whole control group to be excluded. 

Alternatively, more statistical precision can be obtained with the same number of animals. We have 

successfully piloted this approach and present two case studies from immunology and CNS research areas.  

Reference: Walley R, Sherington J, Rastrick J, Detrait E, Hanon E and Watt G  Using Bayesian analysis in 

repeated preclinical in vivo studies for a more effective use of animals. Pharmaceutical Statistics 2016; 

15(3):277-285, DOI: 10.1002/pst.1748 



Introduction 

• Many of the in-vivo models used in pre-clinical pharmaceutical

research are run repeatedly over a period of time with a

consistent protocol and control group(s) to test different

compounds.

• Typically, historic data from the control group of previous studies

are ignored when running a new study.

• We have used Bayesian statistical models to incorporate
information from the historical controls into a new study,
down-weighting this information to allow for variation
between studies.

• This Bayesian methodology can allow the number of control

animals in the current study to be reduced or, in some cases, a

whole control group to be excluded. Alternatively, more

statistical precision can be obtained with the same number of

animals.

• We have successfully piloted this approach and present two

case studies from immunology and CNS research areas.

 

 

 

Case study 1: Lipopolysaccaride (LPS)- 

induced endotoxaemia 

• The LPS-induced model of endotoxaemia is a short term in vivo

pharmacology model used for the initial assessment of novel

inhibitors on pro-inflammatory pathways.

• Mice were pre-treated with either an anti-inflammatory reference

antibody; test compound(s); or vehicle - 5 and 30mins prior to

LPS challenge.

• Mice were challenged with LPS (i.p; 25mg/mouse).

• There was an additional vehicle treated group that was not

challenged

• At 3.5 hours post LPS challenge, mice were terminally

anaesthetized, blood was collected and then plasma IL-6 levels

determined using an ELISA-based multiplex platform (Mesoscale

Discovery; N75012B-1).

• All studies were performed using male Balb/c mice (20-25g)

obtained from Harlan (UK). All mice were housed in specific

pathogen free conditions in standard cages with food and water

supplied ad libitum. All experiments were performed in

accordance with the UK Animals (Scientific Procedures) Act

1986.

How useful is the historical information? 

Imagine we have 10 historic experiments and are about to run 

experiment 11. 

Intuitively, the relevance of the historic controls depends on the 

size of the study to study variation. 

  Low expt-to-expt variation  High expt-to-expt variation 

 

Exploring the use of Bayesian statistical models to reduce  
the number of animals in control groups 

Ros Walley, John Sherington, Joe Rastrick, Alex Vugler, Gill Watt 

Conclusions 

Bayesian methods for the statistical analysis of 
in-vivo studies have two potentially useful roles, 
both of which can reduce the use of animals in 
research : 

• Predictive distributions can be used to replace a
control group (one not used in formal statistical
comparisons), as in the LPS model.

• A full Bayesian approach can be used to
augment a control group with historical data,
appropriately down-weighted, as in the NOR
model

In terms of the 3Rs, Bayesian statistical models 
can  
reduce the numbers of control animals used in 
studies.  

• While the reduction of numbers of animals in a
single study may be modest, for repeated
assays the reductions significantly accumulate
over time.

• For example, if the number of control animals is
reduced from 12 to 6 in an assay run 25 times
per year, this amounts to 150 animals per year.

New study data:  
8 per group (for the 

other groups) 

Traditional 
analysis of 

current study 

Bayesian 
analysis of 

historic control 
data 

QC-chart like limits 
for control group 

Overlay Bayesian 
analysis in data 
presentations 

Suitable for control groups not used in statistical 
comparisons 

Overview of Bayesian methods used 

1. Analyse historic control data, excluding the last study.

• Bayesian meta-analysis, based on methodology in

Neuenschwander et al., Clin Trials 2010 7: 5

2. Analyse the last study

• Show what would have happened if we had “bought into” the

Bayesian approach; omitting animals if necessary

3. Possible options for future studies:

• Omit all/some animals from all/some control groups.

• Use historic data as prior information combined with

observed data in a Bayesian analysis.

• Use historic data to give a predictive distribution for control

group. i.e. don’t include that treatment group in current study.

Two approaches for different controls 

1. Control group not used in formal comparisons.

• Examples of uses: To ensure challenge is working in a

robust reproducible manner; to establish a “window”; to

check consistency with previous studies; to convert values

to %.

• Approach: Replace control group with a range from a

predictive distribution. This is illustrated for a ‘No challenge’

group in Case study 1.

2. Control group used for formal comparison vs.

test compounds/doses

• Examples of uses: Comparison in t-tests; confidence

intervals of differences between control vs. treated etc…

• Approach: Combine down-weighted historic data with the

current experiment. This is illustrated for the Vehicle treated

group in Case study 2.

“Using a Bayesian approach will lead to more 
rapid and more economical drug development 
without sacrificing good science” 

Berry DA.  Bayesian clinical trials.  Nature Reviews 2006; 5: 
27-36.

Bayesian 
analysis of 
current study 

Results and 
conclusions 

New study data: 
8 per group 

Bayesian 
analysis of 

historic control 
data 

Effectively N control 
animals with mean, m 

Case study 2: Novel Object Recognition 

model 

• Each experiment is performed in two trials:-

• Acquisition trial – the rat is allowed to explore an arena

containing two identical objects.

• Retention trial – this is run a fixed time after the acquisition

trial, and one of the two objects presented during the

acquisition trial is replaced by an unknown (novel) object.

With this delay, untreated animals poorly distinguish

familiar and novel objects.

• An index of differential exploration is calculated as the

difference in time spent exploring the new and familiar objects

divided by the sum of both times, and is regarded as

representative of the functionality of recognition.

• Data from  Vehicle group from 17 previous studies were

analysed to give prior information for the mean of this group.

Data from the ‘No Challenge’ group from 25 previous studies was 

analysed to give a predictive distribution for a new study. 

Conventional analysis of new study omitting the No Challenge 

group and replacing it with predictive limits is shown below. 

• Data from  Vehicle group from 17 previous studies were

analysed to give prior information for the mean of this group.

• This was then incorporated into a full Bayesian analysis of the

latest study.

• The prior information was equivalent to have an additional 90

vehicle animals

The figure below shows interval estimates of the vehicle means 

and differences from vehicle, comparing a conventional ANOVA 

vs. the full Bayesian approach.  
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