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Abstract

We examine a potential mechanism of localised bleeding in the optic nerve sheath arising from
head injury in infants. We consider how a rapid deformation of the skull leads to a rapid rise in
intracranial pressure, which in turn creates a disturbance that propagates along the cerebrospinal fluid
(CSF) in the optic nerve sheath subarachnoid space (ONSAS). The skull is modelled mathematically
as a set of hinged plates and the ONSAS as a collapsible fluid-filled channel. Our model predicts
that the propagating disturbance steepens into a shock at its leading edge, and that reflection of
the disturbance at the closed end of the ONSAS leads to locally elevated CSF pressure. This may
provide a mechanistic explanation for bleeding in the ONSAS close to the back of the eye. Our
study demonstrates how mathematical modelling can provide insights into mechanisms of trauma in
situations where human or animal experiments are inappropriate.

1 Introduction

Patterns of retinal bleeding are important signatures of injury or disease, and retinal haemorrhage (RH)
is a prominent feature in cases of non-accidental head injury (NAHI) in children. However, there is
disparity between clinical observations of RH and most biomechanical approaches to thresholds of retinal
vascular damage [4]. In addition, RH can occur due to elevated intracranial pressure and elevated
vascular pressure, with retinal pathology in Terson’s syndrome, seen in situations of precipitate rise in
intracranial pressure (ICP) (such as due to rupture of an intracranial arteriovascular malformation or
arterial aneurysm), having the greatest similarity to the RH and retinal perimacular folds of NAHI and
severe accidental head injury [13, 20].

Retinal pathology in Terson’s syndrome is frequently accompanied by optic nerve sheath (ONS)
bleeding [14] as in many cases of NAHI [8]. However blood does not enter the ONS directly from the
cranial compartment, despite a direct connection between the intracranial cerebrospinal fluid (CSF)
space surrounding the brain and the optic nerve subarachnoid space (ONSAS) in the meningeal layer of
the ONS [19]. Instead, the severe elevation in ICP is communicated to the CSF in the ONSAS, where
the blood vessels bridging this space are exposed to the increase in pressure and are hence vulnerable to
rupture. The central retinal vein (CRV) may be particularly vulnerable to compression as it traverses
the ONSAS space as it exits the optic nerve. Central retinal vein occlusion (CRVO), accompanied by
the reflex arterial pressure elevation due to raised intracranial pressure, may then lead to the retinal
pathology [14].

In order to gain insight into a possible mechanism for localized ONS bleeding, we consider here a
scenario in which a sudden rise in intracranial pressure (ICP), associated with traumatic head injury
in an infant, generates a disturbance in the CSF in the ONSAS, leading to locally elevated pressures
at its distal end. We use an idealised mathematical model of the infant skull to estimate the rise in
ICP, and model the ONSAS as a collapsible fluid-filled channel to consider how the pressure disturbance
propagates towards the back of the eye. We consider infants at an age when the skull plates have yet to
fuse. We assume the overall deformation of the skull is determined by the bending resistance between
the skull plates. For such infants we focus on a sudden impact to the head, as might be the case in a
head-on car crash with the infant in a rear-facing child seat. In a severe crash RH has been observed.
In cases of repeated oscillation of the infant’s head, we consider the effect of abrupt deceleration of the
head during one oscillation.

In detail, the sequence of events that we envisage is as follows:
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• the impact to head causes a sudden rise in intracranial pressure (ICP), associated with deformation
of the soft infant skull;

• the rise in CSF pressure is transmitted to the CSF occupying the optic nerve sheath (within the
ONSAS) outside the skull;

• the pressure rise generates a wave of CSF that propagates along the ONSAS, steeping at its front
into an elastic jump;

• the wave accumulates fluid behind its leading edge and then reflects from the closed end of the
ONS near the back of the eye;

• the pressure is elevated at the reflection site, so expanding/stretching the dura and causing damage
to blood vessels that span the ONSAS (alternatively damage to the blood vessels might be ascribed
either to the relatively rapid flow of CSF past them, or to viscoseleastic effects because of the rapid
expansion).

This concept relates to studies by [2] on syringomyelia which also ascribe damage to reflection of an
elastic jump at a blockage in the spinal column.

2 Background

2.1 Anatomy

The eye and the brain are directly connected by the optic nerve, where long bundles of axonal fibres
transmit signals from the retina to the thalmus. The optic nerve measures approximately 3mm in
diameter and approximately 40mm in length, exceeding the total length of the orbit by about a factor
of one third; the slackness allows for free rotation of the eyeball.

The meningeal tissue surrounding the brain is deflected around the optic nerve providing direct
communication with the CSF spaces in the brain. This meningeal tissue forms the ONS and comprises
four concentric layers: the pia, the ONSAS, the dura and a layer of fat (see figure 1). The pia mater is
adhered to the outside of the optic nerve while the dura mater is externally surrounded by fatty tissue
forming a cushion for the eye inside the orbit. The arachnoid membrane is attached to the interior
surface of the the dura, and confined between this and the pia is the ONSAS, which is filled with CSF.
However, this CSF space terminates at the level of the lamina cribrosa/sclera, and so any flow along
the CSF space toward the eye must be reflected back toward the brain. The ONSAS has a width of
approximately H=0.5–1.2mm [21], however it widens anteriorly before terminating.

2.2 Stiffnesses and elasticities

The Young’s modulus of bone in the skull rises from around 2GPa at birth to 6GPa at age 6 [17]. The
Young’s modulus E for a suture under stretch has been estimated to be 1/35 of the bone modulus [5],
giving Esuture ≈ 5 − 15MPa. The brain is substantially softer: we assume here that Ebrain ≈ 350Pa.
To estimate the bending stiffness of a suture, use the three-point bending test result

E =
F

d

L3

4wh3
(1)

where F is the applied force, d the deflection, L the distance between supports, w the sample width and
h the sample thickness. The work done is then

Fd = Esuture4wh
3 θ

2

L
= 1

2Kwθ
2 (2)

where θ ∼ d/L is the deflection angle and K = 8Esutureh
3/L a constant representing the stiffness of the

suture per unit length. With Esuture = 10MPa, h = 2mm and L = 2mm, we estimate the stiffness per
unit length of the suture to be K ≈ 80 Pa m2. Additional parameters are listed in Table 1.
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Figure 1: Schematic of the optic nerve and the surrounding sheath. SAS: subarachnoid space.

Parameter Symbol Typical Value
Skull radius a 0.1 m
Skull Youngs modulus Ebone 10 MPa
Brain Young’s modulus Ebrain 350 Pa
Brain density ρ 103 kg m−3

Skull Suture bending stiffness (per unit length) K 80 Pa m2

ONSAS thickness h0 0.7mm
baseline CSF pressure p0 12mmHg
ONSAS length L 27mm
density of CSF ρc 1000 kg m−3

viscosity of CSF µ 0.001 Pa s
stiffness parameter of dura Kd fitted
elastic tension in dura Td unknown
baseline diameter of the optic nerve Don 3mm
baseline diameter of the optic nerve sheath Dons 4.4mm

Table 1: Table of key parameters.

3



Impact

µs ms s
min

Sound wave 

through 

bone

Wave 

propagation 

through 

sheath

Sound wave 

through brain

Skull 

deformation

Shear wave 

through 

brainTimescales

Figure 2: A schematic diagram illustrating relevant timescales.

2.3 Timescales

We identify the following timescales in the problem (see figure 2).

• The time for a sound wave to propagate 10cm through bone, based on a sound speed 4000m/s, is
0.25× 10−4 s.

• The time for a sound wave to propagate 10cm through water (brain), based on a sound speed
1500m/s, is approx 10−4 s.

• The timescale for a wave to propagate 25mm along the ONS is 0.01s: we estimate this by assuming
the wavespeed to be similar to an artery at 2.5m/s (from compliance data; see below).

• The timescale of skull deformation when oscillating at its fundamental frequency is estimated below
to be around 10−2 s.

• The wavespeed in brain tissue (elastic shear wave) is (Ebrain/ρ)1/2 ≈ 0.5 m/s for Ebrain = 350 Pa,
ρ = 103 kgm−3. The time for a wave to propagate 10cm through brain tissue is approx 0.2s.

• For flow through the short gap between the optic nerve and bone, the time for viscous effects to be
significant when pressure is ramped suddenly is ρch

2/µ; for CSF (water) in a gap of 0.2 mm, the
viscous penetration time is 4 s. So the flow in this gap can be treated as inviscid.

We therefore focus on events taking place on timescales of order 0.01s, over which pressure is expected
to rise in the skull after an impact and waves to propagate along the ONS.

The upstream boundary condition for the collapsible sheath is p1 = pbrain−Lρu1t, if one accounts for
unsteady inertia in the segment of length L adjacent to bone. The pressures arising over a time of 0.01s
are order 100Pa for speeds of 1m/s over a distance 1mm, which is substantially smaller than the rise in
CSF. Therefore we ignore the unsteady inertia of the fluid in this gap. (It may however be necessary to
account for viscous losses where the optic nerve passes through the skull.)
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Figure 3: Measurements of the radius of the dural sheath as a function of CSF pressure (blue filled
circles) along with fitted constitutive model for the dura tissue with H = 0.7mm at p0 = 12mmHg (black
line). The blue dotted line represents the optic nerve and the red dotted line represents the baseline
position of the dural sheath.

2.4 Constitutive model for the dura mater

To fit a constitutive law for the dura using the data obtained by [1] and plotted as filled blue circles in
Fig. 3, we assume an exponential relationship between CSF pressure and ONS diameter Dons.

We relate this to the thickness of the ONSAS by writing Dons = 2h+Don, where Don is the diameter
of the optic nerve. We then define the displacement of the the dura from its baseline as d = h−H, where
H is the baseline width of the ONSAS. In general H is a function of the position along the ONSAS, but
in this section we assume H = h0, a constant.

We assume that the constitutive law for the width of the ONSAS takes the form

P =

{
p0 +Kd(exp (αd)− 1), d > 0,

p0 + (KdH/h) exp (−αd), d < 0.
(3a)

We perform least squares fitting for the two unknowns α and K based on the data of [1]. For h0 = 0.7mm
at a CSF pressure of p0 = 12 mmHg [21] we estimate

Kd = 6.510mmHg, α = 1.314mm−1, (4)

shown as the black line on Fig. 3.

3 CSF pressure perturbation from a traumatic event

The skull comprises a number of relatively rigid plates which fuse together as the child grows. The
brain and other material in the skull cavity is almost incompressible but relatively easy to deform in a
volume-conserving manner. It is clear that a sudden acceleration or deceleration of the skull (or some
part of it) will result in pressure changes within the brain. Physically, there are a number of mechanisms
which can cause these changes:

1. a uniform pressure change δpg in response to a global compression, or to satisfy global incompress-
ibility;

2. a pressure change δpa that is varies linearly in space (i.e. has a uniform gradient) in order to provide
a uniform acceleration or deceleration of the skull and brain;
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3. a spatially varying pressure change δpi to satisfy local compression / incompressibility in response
to local inertial forces in the brain;

4. a spatially varying pressure change δpe to satisfy local compression / incompressibility in response
to elastic shear forces.

We estimate the size of the last three pressures below.

3.1 Order-of-magnitude estimates

We model the skull as a relatively hard but hinged spherical shell of radius a, containing an incompressible
elastic material of density ρ and Young’s modulus E. The skull plates are considered rigid, with the
sutures between them having a bending stiffness K per unit length, and the total length of suture is
O(a). The skull is assumed to be moving at velocity V before being brought to an abrupt halt by a
collision with a stationary rigid blunt object.

During the impact, the skull and brain will deform. We use energy arguments to estimate the
maximum possible deformation, and the natural frequency of the resulting oscillations, before using
these to obtain estimates of the sizes of the various forces and pressures produced.

The initial kinetic energy T of the skull and brain is estimated by

T ∼ ρa3V 2 . (5)

Suppose that the maximum deformation of the sphere is εa, and thus the plate sutures bend by an angle
θ = O(ε), and the brain undergones a strain of O(ε). For the worst-case scenario, we assume that at
the maximum deformation, all the initial kinetic energy has been converted into elastic energy Us in the
skull sutures and Ub in the brain. Since there is a length of O(a) of sutures, and a volume of O(a3) of
brain, the energies are estimated as follows:

Us ∼ a ·K · θ2 ∼ ε2aK , Ub ∼ a3 · E · ε2 ∼ ε2a3E . (6)

Provided K � a2E (which is verified below) the skull energy will dominate, and hence T ∼ Us, which
gives

ε2 ∼ ρa2V 2

K
. (7)

The natural oscillations of the skull in this deformation mode will then be due to a balance of the forces
from the skull-plate sutures and inertia within the brain. The torque from the sutures will be Kθ per
unit length. The mass to be moved is ρa3. If the oscillations have frequency ω, then the acceleration
scales like εaω2. Newton’s second law then gives

a · 1

a
·Kε ∼ ρa3 · εaω2 ⇒ ω2 ∼ K

ρa4
. (8)

In (41) below we provide a more precise estimate of this frequency.
The deceleration at the impact will occur on the same timescale as the natural oscillations. The

pressure difference δpa associated with this will therefore be

δpa
a
∼ ρωV ⇒ δpa ∼

√
ρKV

a
. (9)

The pressure differences δpi associated with the inertia of the brain is estimated as

δpi
a
∼ ρεaω2 ⇒ δpi ∼

√
ρKV

a
, (10)

which is the same scale as δpa. The pressure difference δpe associated with elastic shear forces in the
brain is estimated as

δpe
a
∼ εE

a
⇒ δpe ∼

√
ρKV

a
· a

2E

K
, (11)

which will be small compared with the other two pressures provided a2E � K.
From the values in table 1, we obtain a2E/K ∼ 0.04 (taking E = Ebrain), so we do indeed have

a2E � K.
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Figure 4: A depiction of the simple hinged skull model considered in §3.2. (a) The skull in its natural
circular configuration. (b) The single mode of oscillation, with its two extreme configurations.

From (7) and the values in table 1, we have ε ∼ 0.35(V /ms−1). This is too large for physically
reasonable speeds and deformations. So either the sutures must be stronger than expected, geometric
constraints in the 3D deformations lead to some additional resistance, or the resistance of the brain to
deformations must be larger than expected at larger deformations.

From (8) and the values in table 1, we have ω ≈ 30 s−1 to be the resonant frequency of the skull
oscillation. This frequency is significantly higher than that expected in shaking-induced injury, suggesting
there is unlikely to be a resonant interaction. However shaking may lead to rapid decelerations of the
head at the end of each cycle, which can be expected to induce rapid pressure changes over a timescale
1/ω.

3.2 Simple model for oscillations of a 2D hinged skull

In this section, we make these estimates more precise by determining the frequency of the normal mode
of oscillation for a simple model of a hinged skull surrounding an elastic brain.

We assume that the skull is initially a thin circular shell of interior radius a and is made of four rigid
hinged plates, each occupying 1

4 of the circumference, as shown in figure 4. The hinges are sprung, and
exert a torque equal to K times the angular deflection from their natural configuration. The inside of
the skull is filled with a uniform incompressible linearly elastic material, with density ρ and Young’s
modulus E.

We use both cartesian coordinates (x, y) and polar coordinates (r, θ), and assume that the deforma-
tions are small. The vector displacement of the material point initially at (a, θ) on the skull is described
by δ(θ, t). The interface conditions between the skull and the interior are linearised back to r = a.

3.2.1 Interior equations and boundary conditions

As discussed above, we assume that the normal mode oscillations will be on a timescale T such that

T 2E

ρa2
� 1 (12)

This ensures that the motion will be inertia-dominated, and elastic shear forces can be neglected.
The governing equations for the displacement u and pressure p in the interior are then

ρ
∂2u

∂t2
= −∇p , (13)

∇·u = 0 . (14)

subject to
u · r̂ = δ · r̂ on r = a . (15)

Thus the interior behaves like an inviscid fluid. We would expect some elastic shear layers adjacent
to the boundary, in order to allow the imposition of a tangential displacement boundary condition. In
practice, since the brain is surrounded by a layer of CSF, it would be more appropriate to apply stress-
free conditions there. Thus the shear layers will be weak, and we shall neglect them in the calculations
that follow.
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Figure 5: The motion of a single plate undergoing a rotation of angle ε about the point x0, within the
linearised approximation for ε � 1. A general initial point r̄(θ) on the skull is displaced by δ(θ) to lie
at new position r(θ).

In the usual way, we take the divergence of (13) and apply (14), so obtain a field equation for the
pressure:

∇2p = 0 (16)

Using (13), the kinematic boundary condition (15) becomes:

∂p

∂r
=
∂2δ

∂t2
· r̂ (17)

We also need a dynamic boundary condition, which says that the traction τ on the skull is given by
pressure

τ = pr̂ . (18)

(There is no tangential traction because of the assumption of a thin CSF layer surrounding the brain.)

3.2.2 Plate Motion

The four skull plates can oscillate only in a single mode. The deformation has one degree of freedom
only, which we describe by ε(t), the angle through which each of the plates rotates.

We consider just the plate in the first quadrant as shown in figure 5; the others will follow by
symmetry. For small amplitude deformations, the plate effectively rotates about the point x0 = (a, a),
with infinitesimal rotation matrix

Rε =

(
1 −ε
ε 1

)
(19)

The initial and deformed positions of a material point initially at angle θ are given by

r̄ = a

(
cos θ
sin θ

)
, r = Rε(r̄ − x0) + x0. (20)

Then the deformation is given by

δ = r − r̄ = Rε(r̄ − x0)− (r̄ − x0) = (Rε − I)(r̄ − x0). (21)

Putting in the values we get

δ = a

(
0 −ε
ε 0

)(
cos θ − 1
sin θ − 1

)
= εa

(
− sin θ + 1
cos θ − 1

)
. (22)
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Figure 6: The linearised normal displacements of the skull under the simple hinged model, when each
plate rotates by a small angle ε. The curve is plotted by extending (23) to the full range of θ using
symmetry.

The normal component of the displacement is then

δ · r̂ = εa

(
− sin θ + 1
cos θ − 1

)
·
(

cos θ
sin θ

)
= εa(cos θ − sin θ)

= −εa
√

2 sin(θ − π/4) . (23)

This is extended by symmetry to the full range 0 ≤ θ < 2π. The resulting function is shown in figure 6.

3.3 Interior solution

The general solution to Laplace’s equation in 2D polar coordinates can be written as

p =

∞∑
n=0

rn
[
an cos

(
n(θ − π/4)

)
+bn cos

(
n(θ − π/4)

)]
. (24)

Because of the symmetry of the boundary forcing, we can drop some of the terms from the sum. It is
also convenient to introduce a number of pre-factors. We therefore write our ansatz as

p = ε̈ρa2
∞∑
n=0

bn

( r
a

)4n+2

sin
(

(4n+ 2)(θ − π/4)
)
. (25)

From this and (23), the boundary condition (17) then becomes

∞∑
n=0

bn(4n+ 2)
( r
a

)4n+1

sin
(

(4n+ 2)(θ − π/4)
)

=
√

2 sin(θ − π/4) (26)

for 0 < θ < π/2. Treating this as a half-wave Fourier series, and writing φ = θ − π/4, the coefficients
can be written as

bn =
4
√

2

π(4n+ 2)

∫ π/4

−π/4
sin(φ) sin

(
(4n+ 2)φ

)
dφ , (27)

=
4
√

2

π(4n+ 2)

∫ π/4

0

cos
(

(4n+ 1)φ
)
− cos

(
(4n+ 3)φ

)
dφ (28)

=
8(−1)n

π(4n+ 1)(4n+ 2)(4n+ 3)
. (29)
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Figure 7: The various forces and moments acting on a skull plate from the hinges and the interior.

Thus, in the interior,

p = ε̈ρa2
∞∑
n=0

8(−1)n

π(4n+ 1)(4n+ 2)(4n+ 3)

( r
a

)4n+2

sin
(

(4n+ 2)(θ − π/4)
)
. (30)

From (18), the traction exerted on the skull plates at r = a is

τ = ε̈ρa2
∞∑
n=0

8(−1)n

π(4n+ 1)(4n+ 2)(4n+ 3)
sin
(

(4n+ 2)(θ − π/4)
)
r̂ . (31)

3.4 Moment balance on a skull plate

In order to close the problem, we must apply Newton’s second law to each of the skull plates. We
assume that the inertia of the pates is negligible (compared to that in the interior), so that the forces
and moments on each plate are always in equilibrium.

The various forces and moments acting on the plate are shown in figure 7. These are, the traction
τ (θ) from the fluid, contact forces Tx and Ty at the joints, and moments Mx and My at the joints. The
forces must be in the directions shown by symmetry. Their values are set by appropriate integrals of the
traction over the plate. It is thus convenient to take moments about the point x0 to avoid contributions
from these forces.

The equilibrium equation is then
G+Mx +My = 0 (32)

where Mx = My = −2Kε are the moments from the hinges, and G is the total moment about x0 from
the traction τ . Geometrically, we see that G is given by

G = −
√

2a

∫ π/2

0

(τ · r̂) sin(θ − π/4) adθ . (33)
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Substituting for τ from (31), and again writing φ = θ − π/4, we have

G = −8
√

2ε̈ρa4

π

∞∑
n=0

∫ π/4

−π/4

(−1)n sin
(
(4n+ 2)φ

)
sin(φ)

(4n+ 1)(4n+ 2)(4n+ 3)
dφ , (34)

= −8
√

2ε̈ρa4

π

∞∑
n=0

∫ π/4

0

(−1)n
cos
(
(4n+ 1)φ

)
− cos

(
(4n+ 3)φ

)
(4n+ 1)(4n+ 2)(4n+ 3)

dφ , (35)

= −16ε̈ρa4

π

∞∑
n=0

1

(4n+ 1)2(4n+ 2)(4n+ 3)2
, (36)

= −4(C − log 2)ε̈ρa4

π
(37)

where C = 0.915 . . . is Catalan’s constant.
The equilibrium equation (32) then becomes

4(C − log 2)ε̈ρa4

π
+ 4Kε = 0 (38)

or

ε̈+

(
πK

(C − log 2)ρa4

)
ε = 0 . (39)

This represents simple harmonic motion, with general solution

ε(t) = ε0 cos(ω(t− t0)) , (40)

where ε0 is the amplitude and t0 a phase factor, and the frequency ω is given by

ω =

√
πK

(C − log 2)ρa4
. (41)

As anticipated in the scaling argument above, in order for the assumption (12) to hold with T ∼ ω−1,
we find we need

a2E

K
� 1 . (42)

This can be interpreted physically as the elastic interior being much softer than the hinges between the
skull plates.

3.4.1 Pressure and motion inside the skull

Using (25) and the solution (40) for ε(t), the pressure inside the skull is given by

p = −ε0ρa2ω2 8

π
cos
(
ω(t− t0)

)
×
∞∑
n=0

(−1)n

(4n+ 1)(4n+ 2)(4n+ 3)

( r
a

)4n+2

sin
(

(4n+ 2)(θ − π/4)
)
. (43)

From this, a streamfunction can be constructed for the particle displacements inside the skull:

ψ = ε0a
2ω2 8

π
cos
(
ω(t− t0)

)
×
∞∑
n=0

(−1)n

(4n+ 1)(4n+ 2)(4n+ 3)

( r
a

)4n+2

cos
(

(4n+ 2)(θ − π/4)
)

(44)

Instantaneous contours of p and ψ are plotted in figure 8.
The pressure scales as

∆p ∼ ε0ρa2ω2 ∼ ε0K

a2
, (45)

11



-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 8: Instantaneous isobars (dashed lines) and particle pathlines (continuous lines) during oscillations
using the simple skull model, plotted by taking contours of (43) and (44) respectively.

and has the largest amplitude adjacent to the hinges. An estimate for ε0 is obtained by balancing the
typical kinetic energy 1

2 (ρπa2)V 2 in a skull moving with uniform velocity V before a collision with the
peak elastic energy 1

24K(2ε0)2 in the hinges in the oscillatory mode afterwards. This yields

ε0 ∼
√
ρa2V 2

K
. (46)

Using this estimate, we obtain

∆p ∼
√
ρKV

a
(47)

consistent with (9) For a typical collision speed of 30 mph (13 ms−1), the values in table 1 give an estimate
of the pressure perturbations of the order of 105 Pa.

4 Pressure wave propagation and reflection in the ONSAS

Having considered how a deflection of the skull can lead to an increase in CSF pressure, we now consider
a model for the flow of CSF along the ONSAS towards the eye. In particular, we consider an analytical
model for the propagation of a CSF pressure pulse generated by a rapid skull motion (Sec. 4.1), demon-
strating that this wave will steepen and form an elastic jump and examine its reflection at the ONSAS
terminus (Sec. 4.2). Finally, we characterise the change in amplitude of this wave upon reflection using
full numerical simulations (Sec. 4.3).

4.1 The model

We consider a 2D cross-section through the ONSAS oriented parallel to the optic nerve. We model
the optic nerve and Pia mater as rigid, flat, impermeable surface forming one wall of the channel. We
denote x and y as the directions along and normal to this surface oriented into the ONSAS as shown on
Fig. 9(b).

We model the dura mater and arachnoid membrane as a single elastic sheet with a constitutive law
linking CSF pressure and displacement derived in Sec. 2.4. Under healthy conditions we assume that
this membrane is in some reference configuration y = H(x), which correlates to a CSF pressure in the
normal physiological range. In general we denote the position of the dura as y = h(x, t). The setup of
the model is shown in Fig. 9(b).
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Figure 9: (a) Sketch of the geometry within the ONSAS (b) Setup of the mathematical model for the
flow of CSF along the ONSAS

We assume the CSF can be modelled as ideal fluid with density ρc. Denoting the 2D fluid velocity field
in the ONSAS as u = (u, v) and the CSF pressure as p(x, t), the flow is governed by the incompressible
Euler equations

∇ · u = 0, (48a)

ut + u · ∇u = − 1

ρc
∇p. (48b)

The flow is subject to the no-penetration condition v = 0 on the interface y = 0, and kinematic and
continuity of normal stress conditions on the dura

v = ht + uhx, (49a)

p = P(h), (49b)

where P is the constitutive law fitted in (3) with h = H + d.
Assuming that the flow can be modelled as inviscid, the propagation of the elastic jump generated by

the shock along the ONSAS can be approximated by the shallow-water equations and a tube law, which
relates the cross-sectional width h to the local transmural pressure p [15], i.e.

ht + (uh)x = 0, (50a)

ut + uux = − 1

ρc
px, (50b)

p = P(h). (50c)

Disturbances propagate at the dimensional wave-speed c satisfying

c2 =
h

ρc

dP
dh

. (50d)

The wavespeed in the ONS is estimated from c2 = (h/ρc)(∆p/∆h) to be c ≈ 2.5 m/s2.

4.2 Analytical solution for uniform width ONSAS

In this section, an analytical solution to the system (50) is sought. The ONSAS is modelled as an
elastic-walled channel of uniform width H = h0 at uniform pressure p = p0 (figure 11a). The system of
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equations is solved using the methods of characteristics using the following Riemann invariants:

R± = u±
∫

c

h
dh,

dR±
dt

= 0 on
dx

dt
= u± c. (51)

4.2.1 Propagation of a pressure perturbation along ONSAS

We model a sudden rise in CSF pressure in the brain. This is communicated to the ONS via a short
relatively rigid-walled channel where the ON passes through the skull. We neglect the pressure losses
across this region and therefore prescribe p at the inlet of the ONS (x = L). The initial excitation caused
by the shock is therefore modelled as a jump in pressure from p = p0 to p = p1, where p1 and h1 are
linked by the tube law. The CSF is taken to be at rest initially with u = 0, p = p0. The elastic jump
advances at the speed V01, as depicted in figure 11(b). The Rankine–Hugoniot conditions of conservation
of mass and momentum across the elastic jump are applied, with h = h0, u = 0, p = p0 ahead of the
shock, and h = h1, u = u1, p = p1 behind the shock, i.e.

(u1 − V01)h1 = −V01h0 (52a)
1
2ρc(u1 − V01)2 + p1 = 1

2ρc(−V01)2 + p0. (52b)

The first equation yields:

u1 = V01

(
1− h0

h1

)
, (53)

which leads to the expressions for u1 and V01:

V 2
01 =

2 (p1 − p0)

ρc

(
1− h2

0

h2
1

) , u21 =
2 (p1 − p0)

(
1− h0

h1

)
ρc

(
1 + h0

h1

) . (54)

As a result, u21 < V 2
01 for h0 < h1.

4.2.2 Reflection of a finite pressure perturbation along ONSAS

In order to take into account the temporality of the initial excitation and calculate the duration of the
spike in pressure at the rigid wall and the length of the region affected by it, the excitation at the inlet
is modelled as a constant pressure pulse of amplitude p1 and duration ∆t0. As a result, the disturbance
is a shock wave followed by a rarefaction wave. As described in the previous section, the reflection of
the shock at the rigid wall at t1 = L/V01, where L is the length of the channel, creates a region of high
pressure. As the wave changes its direction of propagation the reflected shock meets the rarefaction
wave. The aim of the following analysis is to model the reflection of the pressure perturbation anteriorly
and to calculate the length lp of the region of high pressure and the duration tp of the high pressure
at the scleral cul-de-sac, which is here modelled as a rigid wall. The key quantities that determine the
behaviour of the system are the speed of the back of the rarefaction wave c0 given by the tube law; the
speed of the front of the rarefaction wave u1 + c1, given respectively by equations (54) and the tube law;
the speed of the initial shock V01, given by equation (54); and the speed of the reflected shock V12, which
is calculated below.

After reflection, the elastic jump travels at the speed V12, with V12 < 0 to account for the direction
of the motion away from the boundary. Behind the shock, h = h2, p = p2 and u = u2 = 0, and the shock
advances into h = h1, u = u1, p = p1. The Rankine–Hugoniot conditions become:

(u1 − V12)h1 = −V12h2 (55)
1
2ρ(u1 − V12)2 + p1 = 1

2ρ(−V12)2 + p2, (56)

which lead to

V 2
12 =

2(p2 − p1)

ρ(
h2
2

h2
1
− 1)

. (57)

We are primarily interested in the amplification of pressure at the rigid boundary, i.e.

K =
p2
p1

= 1 +
(h1 − h0)(h2 + h1)

(h1 + h0)(h2 − h1)
. (58)
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Figure 11: An elastic jump along a flexible-walled channel: the channel width and pressure amplification
are plotted versus the input pressure difference. The red curve is computed for a linear tube law and the
blue curve for a nonlinear tube law representing a tube that stiffens on inflation.

This relationship is illustrated in figure 11.
When the tube law is linear, with p = k(h − h0), the stiffness k cancels from the pressure ratio and

h2 satisfies:

h2 =
3h21 − h0h1
h0 + h1

. (59)

In order to calculate lp and tp, the length of the channel L and the duration of the pulse ∆t0 need to be
specified. The reflected shock wave meets the rarefaction wave at the time t2, and at the distance l2 from
the wall. The behaviour of the finite pressure perturbation can be illustrated by a simple characteristic
diagram, shown in figure 12. Recalling that t1 = L/V01,

t2 =
L+ (u1 + c1)∆t0 − t1V12

−V12 + u1 + c1
(60)

l2 = (u1 + c1)(t2 −∆t0). (61)

Assuming that its speed is not affected by meeting the reflected shock, the rarefaction wave meets the
wall at t3, so that tp = t3 − t1 can be calculated to be

tp =
L− l2
u1 + c1

+ t2 − t1. (62)

The length lp satisfies lp = L− l2 so that

lp = L− (u1 + c1)(t2 −∆t0). (63)

For a linear tube law, assuming that the CSF pressure at rest is p0 = 11mmHg= 1.5kPa, that the
pressure excitation is p1 = 5kPa and that the optic nerve is about 20mm long, physically meaningful
values for lp and tp are only obtained for an initial excitation ∆t0 ≥ 3.46ms, which correspond to
frequencies of approximately ω ≤ 290s−1. For ω ≤ 43s−1, lp > L, and therefore non-physical values are
obtained. This suggests that given the modelling assumptions proposed here and the set of data used,
the resonance frequency of the baby head following a shock at 13ms−1 (ω = 30s−1) leads to non-physical
results. If the pressure rise p1 is smaller than 200Pa, the resonance frequency does give physical values
of 0 ≤ lp ≤ 12mm, however the pressure surge measured during a simple sneeze suggests that p1 needs
to be larger than 200Pa.

Within the range of physically significant results, lp and tp vary quasi-linearly with ∆t0. For p1 =
10kPa and ∆t0 = 0.0025s:

lp = 0.3mm (64)

tp = 0.6ms, (65)
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Figure 12: A simple characteristic diagram showing the behaviour of the finite pressure perturbation as
it interacts with a rigid wall. The elastic jump reflects off the wall and meets the incoming rarefaction
wave. The dashed line indicates the path the reflected jump would take if it did not meet the rarefaction
wave. The tube law is taken to be linear, p = k (h− h0), with k = 2.2x106Pa/m and h0 = 5mm, so that
h1 ≈ 5mm and h2 = 13.2mm. The density is taken to be ρ = 1000kg/m3. The length of the channel
is taken to be L = 20mm and the pressure perturbation is taken to last t0 = 0.0025s. Indicated in the
diagram is the high pressure region, where p = p2; here we take p0 = 1463Pa, which is equivalent to
p0 = 11mmHg; the initial pressure perturbation is taken to be p1 = 104Pa, so that p2 = 2.82x104Pa.
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which is physically plausible but difficult to test given the limited amount of quantitative data available
from histologic studies.

4.3 Numerical simulations

The shallow water model admits discontinuties in the width of the ONSAS (an elastic jump), which is
difficult to capture numerically without a specially adapted scheme [3]. Instead we modify the model in
two ways to make solving (50) more numerically tractable. Firstly, we modify the elastic wall model to
also include an elastic pre-stress (or tension Td), so that the normal stress balance across the membrane
(49b) becomes

p = pe(x) + P(h)− Tdhxx. (66)

This normal stress balance also incorporates an external pressure gradient pe(x) in the medium sur-
rounding the dura. Secondly, we assume that the CSF has Newtonian rheology with a small viscosity,
µ.

For simulations we set the baseline thickness of the CSF space to be uniform H(x) = h0 = 0.7mm
and the length of the CSF space in the region of interest as L = 27mm. We further define the aspect
ratio of the channel as ε = h0/L. Further parameter values are listed in Table 1.

We derive a typical velocity of the CSF pulse along the ONSAS assuming a balance between the
driving pressure and the fluid inertia, so that U0 = (∆p/ρ)1/2. For example, based on the pressure
perturbation predicted by Sec. 3, ∆P = 105Pa, and assuming ρc = 1000kg/m3 (water), we obtain an
estimate of the flow speed of U0 = 10m/s.

We define dimensionless variables by scaling the coordinate system (x, y) = (Lx̃, h0ỹ), velocities on
(u, v) = (U0ũ, εU0ṽ), time on L/U0 and pressures according to

p = p0 + ∆pp̃ (67a)

P = p0 + ∆pP̃. (67b)

This rescaling results in three dimensionless parameters

K̃ = ε2
K

ρU2
0

, T̃ = ε2
Td

ρU2
0h0

, R̃ = ε
ρU0H

µ
(68)

To leading order in ε, the Navier–Stokes equations reduce to modified shallow-water equations involv-
ing a coupled system of two PDEs for the dimensionless channel thickness h̃(x̃, t̃) and the channel flow
rate q̃(x̃, t̃). However, this system is not closed and so to overcome we assume the flow velocity profile
takes the form of a von-Karman Pohlhausen approximation, being everywhere parabolic of the form

ũ =
6q̃ỹ(h̃− ỹ)

h̃3
, where q̃ =

∫ h̃

0

ũdỹ. (69)

We assume the external pressure gradient takes the dimensionless form

p̃e = −12

R̃
x̃. (70)

The resulting system was previously presented by [18] in the form

h̃t̃ + q̃x̃ = 0, (71a)

q̃t̃ +
6

5

(
q̃2

h̃

)
x̃

= −h̃P̃x̃ +
12

R̃

(
h̃− q̃

h̃2

)
, (71b)

p̃ = P̃ − T̃ h̃x̃x̃. (71c)

where P̃ is defined by (66). These equations hold on the domain 0 < x̃ < 1, where x̃ = 1 represents
the edge of the orbit and x̃ = 0 represents the rigid terminus in the ONSAS (see figure 9a). To mimic
a traumatic event we apply a large pressure perturbation at x̃ = 1, discussed in more detail below.
We also apply zero slope conditions at the lamina cribrosa (x̃ = 0) and fixed membrane height at the
ONSAS inlet (x̃ = 1). To close the system we enforce no flow of CSF through the lamina cribrosa/sclera
q̃(0, t̃) = 0.
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Figure 13: Reflection of an elastic jump at a rigid terminus of the ONSAS using Linear constitutive law
(73) with K̃l = 100: (a,b) propagation of the CSF pulse towards the eye; (c) reflection of the pulse at
the lamina cribrosa; (d) propagation of reflected wave towards the brain.

In the simulations presented below we hold T̃ = 10−4 and R̃ = 500.
We apply a pressure perturbation at the upstream end of the channel over a (dimensionless) period

τ in the form

p̃u = sin2(Ωt̃) 0 < t̃ ≤ 1
4τ, (72a)

p̃u = 1 1
4τ < t̃ ≤ 3

4τ, (72b)

p̃u = sin2(Ω(t̃+ 1
2τ)) 3

4τ < t̃ ≤ τ, (72c)

p̃u = 0, t̃ > τ. (72d)

where Ω = 2π/τ . In simulations below we set Ω = 200.
For convenience we simplify the constitutive law for the dura mater, assuming

P̃(h̃) = K̃l(h̃− 1). (73)

The upstream pressure perturbation generates a pressure pulse which propagates along the ONSAS
towards the eye. Four snapshots from a typical example are shown in Fig. 13(a-d) for K̃l = 100. As this
pulse encounters the rigid end of the ONSAS it is reflected back toward the brain; since the constitutive
law is linear (73) we find that the pressure is amplified by a constant factor of 2. However, this constitutive
law is a poor reflection of the clinical data (see figure 3), so we aim to analyse wave reflections using the
nonlinear constitutive law (3) in future work.

5 Discussion

We have presented here a set of related models seeking to understand the generation and evolution of a
rapid rise in CSF pressure arising from a traumatic injury to an infant skull.

The model for the skull as a hinged circular shell is based on a physical balance between the stiffness
of the sutures between the skull plates and the inertia of the tissue within it. The model exploits an
idealised geometry and is restricted to small amplitudes. However it demonstrates the factors determining
the likely timescale over which a spike in CSF arises and estimates its magnitude. Future studies should
address more realistic geometries and account for nonlinear deformations; finite element simulations in
the literature may be relevant [17, 11, 12].

In the model of the ONSAS we exploited its slender geometry to descibe the internal flow using a
spatially one-dimensional representation of mass and momentum conservation that resembles the shallow
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water equations, coupled to a tube law that relates the CSF pressure to local deformations of the dura.
Measurements indicate that the tube law is strongly nonlinear (figure 3). The governing equations
are sufficiently simple for the disturbance to be described semi-analytically in terms of characteristics.
This makes it possible to estimate the magnitude and duration of the zone of elevated pressure at the
closed end of the ONSAS (figures 11 and 12). In our time-dependent simulations, however, we restricted
attention to a linear tube law. The dynamics of the process was captured using simulations in which the
tube law was extended to account for axial tension, which induces a train of dispersive waves (figure 13)
but which nevertheless illustrates the localised elevated pressure at the peripheral end of the ONSAS.

5.1 Relation of results to healthcare technologies

The eye provides a window to the brain and it may be imaged through a variety of modalities. Haemor-
rhage is a potential indicator to healthcare professionals of trauma to infants. Improved understanding
of the mechanisms leading to bleeding in and around the eye is therefore valuable for child safeguarding,
family protection and criminal justice. The present study focuses on a particular form of bleeding that
is reported in instances of non-accidental head injury. It is our intention to refine the model and publish
the findings in the ophthalmology literature to make the findings available to healthcare professionals.

5.2 Relation of results to 3Rs

Large animal models have been shown to offer advantages over rodent models in replicating specific
mechanisms, morphology and maturational stages relevant to age-dependent brain injury responses [6].
For example, piglets have been used to mimic human brain injury due to (i) impact and (ii) rotational
mechanical trauma via (i) direct impact upon the cortex of the brain causing brain indentation [7] or
(ii) via sudden rapid head rotation [16, 9], and indeed sudden very rapid head rotations in neonatal
piglets have been shown to lead to retinal haemorrhage [4]. The use of over 200 piglets has been
reported in literature from the last 5 years, and these experiments involve severe injury and trauma to
the animals. Furthermore, despite the advantages of large animal models, practicalities and size mean
that a large number of rodents are also used to model brain injury. For example, neonatal rat pups have
been exposed to hypoxia in an atmosphere of 5% oxygen in order to determine whether hypoxia leads to
retinal damage [10]. Nevertheless, better proxies for human developmental anatomy and pathophysiology
are desperately needed because of the biologically unique characteristics of the developing human infant
and young child. Mathematical and computational models complement such approaches by investigating
different mechanisms of injury in silico. Our results suggest that there is potential for mathematical and
computational models to reduce the need for animal experimentation, while providing improved guidance
for clinical diagnosis, with implications for legal assessments in cases of potential child abuse.
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