NC3Rs Workshop
Application of non-animal approaches for decision-making in chemical safety assessment

Using non-animal data for hazard or risk assessment – can we have our cake and eat it?

London, 10-11 December 2018

Prof Martin Wilks
SCAHT, Universität Basel, Missionsstrasse 64, 4055 Basel
www.scaht.org
Risk has two components
Differentiation between hazard and risk is crucial

Hazard: x Exposure = Risk

Hazard:
Intrinsic property of a chemical which describes the potential to cause harm

Exposure:
The amount of a substance a person is confronted with.
The rate of absorption distinguishes external from internal exposure.
OECD Test Guidelines using *in vitro* techniques are available for

- skin/eye corrosion and irritation
- skin sensitisation
- skin absorption
- genotoxicity
- endocrine disruption.
A paradigm shift (NRC, 2007)

- **Where we are:**
 - Complex array of studies
 - Evaluate observable outcomes in whole animals
 - Time-consuming and resource-intensive

- **Where we need to be:**
 - Broad coverage of chemicals, chemical mixtures, outcomes, and life stages
 - Reduce the cost and time of testing
 - Use fewer animals
 - Robust scientific basis for assessing health effects
Integrated Approaches to Testing and Assessment (IATA)

- Pragmatic, science-based approaches for chemical hazard or risk characterization that rely on an integrated analysis of existing information in a weight of evidence assessment coupled with the generation of new information using testing strategies.

- Range of IATA
 - Flexible, non-formalized, judgment-based approaches (e.g. grouping, read-across)
 - Structured, prescriptive, rule based approaches [e.g. Integrated Testing Strategy (ITS)]

- Integrating results from one or many methodological approaches or omic methodologies

- An IATA should be mechanistically informed

Activation of a toxicity pathway (NRC, 2007)

- Exposure
- Tissue Dose
- Biologic Interaction
- Perturbation

Biologic Inputs

Normal Biologic Function

Early Cellular Changes

Adaptive Stress Responses

Cell Injury

Morbidity and Mortality

Activation of a toxicity pathway (NRC, 2007)
A hypothesized mode of action is considered to comprise a set of critical key events from administration of the substance to a final specific toxic outcome.

Mode of action is to be distinguished from mechanism of toxicity, which is a detailed knowledge of the molecular interactions leading to the toxic effect.

The mechanism of toxicity is fully elucidated for only a few chemicals… but many more chemicals have a reasonably well understood MOA, in that the key events are known, measurable, necessary, and consistent.

Mode of Action or Adverse Outcome Pathway?

Mode of Action

- ‘The terms mode of action and adverse outcome pathway should be interchangeable, representing essentially the subdivision of the pathway between exposure and effect in either individuals or populations into a series of hypothesized key events at different levels of biological organization.’

- ‘It should be noted, though, that the term mode of action, per se, does not imply adversity of outcome.’

Mode of Action or Adverse Outcome Pathway?

Adverse Outcome Pathway
- Chemical agnostic
- Endpoint is adversity

Mode of Action
- Chemical specific
- Endpoint is a measurable effect which may or may not be adverse
Why use AOPs?

- How do we identify chemicals that may cause adverse effects before we see impacts on human health or wildlife populations?
- We need to understand
 - HOW chemicals cause adverse outcomes and
 - Biological activities that lead to/are associated with progression toward those AOs
- Creates opportunities to use new types of data for hazard identification and/or risk-based decision-making

Table:

<table>
<thead>
<tr>
<th>Toxicant</th>
<th>Macro-Molecular Interactions</th>
<th>Cellular Responses</th>
<th>Organ Responses</th>
<th>Organism Responses</th>
<th>Population Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Properties</td>
<td>Receptor/Ligand Interaction</td>
<td>Gene activation</td>
<td>Altered physiology</td>
<td>Lethality</td>
<td>Structure</td>
</tr>
<tr>
<td>DNA Binding</td>
<td>Protein Oxidation</td>
<td>Protein production</td>
<td>Disrupted homeostasis</td>
<td>Impaired Development</td>
<td>Extinction</td>
</tr>
<tr>
<td>Protein Oxidation</td>
<td></td>
<td>Altered signaling</td>
<td>Altered tissue development/function</td>
<td>Impaired Reproduction</td>
<td></td>
</tr>
</tbody>
</table>

OECD, 2013
Data integration in an AOP context

Framework for AOP application to IATA

Problem formulation
- regulatory need, endpoint, constraints, acceptable uncertainty

Gather existing information
- organise and structure information using an AOP as a frame

Weight of Evidence Assessment: Adequate information for decision-making?

Generate additional information
- use an AOP to help identify and/or develop targeted testing, testing strategy or assay development

Weight of Evidence assessment: Adequate information for decision-making?

Regulatory conclusion

Linking exposure and adverse outcome

Justin G. Teeguarden; Yu-Mei Tan; Stephen W. Edwards; et al.
DOI: 10.1021/acs.est.5b05311
Copyright © 2016 American Chemical Society
In Vitro – In Vivo Extrapolation (IVIVE)

- **Utilisation of in vitro experimental data to predict phenomena in vivo**
 - Biokinetics
 - Fate of chemicals in the body (ADME)
 - Physiologically-based kinetic (PBK) modelling
 - Biodynamics
 - Effect of chemicals/metabolites at biological target *in vivo*
 - Assay design/selection important; perturbation as adverse/therapeutic/adaptive effect; reversible/ irreversible …

Adapted from:
Barbara Wetmore
IVIVE Webinar, Oct 7, 2015
From Tox21 to risk assessment

Chemical Research in Toxicology

Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment

Richard S. Judson,∗† Robert J. Kavlock,† R. Woodrow Setzer,† Elaine A. Cohen Hubal,† Matthew T. Martin,† Thomas B. Knudsen,† Keith A. Houck,† Russell S. Thomas,‡ Barbara A. Wetmore,‡ and David J. Dix†

†National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States

‡The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, United States
High throughput chemical risk assessment

Flowchart outlining the incorporation of human dosimetry into high-throughput in vitro toxicity testing.

Comparison of human oral equivalent doses (OEDs) and exposure predictions for 163 ToxCast Phase II chemicals

Barbara A. Wetmore et al.: Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing
Distribution of AER values for 163 ToxCast Phase II chemicals

Data-driven 21st century risk assessment framework

Key Points

- Non-animal testing methods are presently used in regulatory toxicology primarily in hazard assessment.
- The use of such methods for risk assessment requires:
 - An integrated approach (IATA) to data generation and analysis using quantitative understanding of key events leading to adverse outcomes.
 - An understanding of the relationship of predicted in vivo effects (PD/TD) to real-life human exposures (PK/TK).
• Development of causal computable biological network models that link the system’s interaction of a toxicant with the organ-level responses.

• As more mechanistic knowledge derived from quantitative measurements accumulates, dynamic models linking the exposure with the organ-level responses can be developed.

• Ultimately, the link between the exposure and the population outcome can be represented by mathematical models that enable the simulation of population-level effects of an exposure.